22. Riemann Sums, Integrals and the FTC
d. Integration Rules and Properties
2. Trig Functions
The table on a previous page listed the properties of derivatives and integrals with respect to algebraic operations. The tables on this page gives the derivatives and integrals for trig functions and their inverses.
Derivative Rule | Integral Rule | |
---|---|---|
Sine | \(\dfrac{d}{dx}(\sin x) =\cos x\) | \(\displaystyle \int \cos x\,dx=\sin x+C\) |
Cosine | \(\dfrac{d}{dx}(\cos x)=-\sin x\) | \(\displaystyle \int \sin x\,dx=-\cos x+C\) |
Tangent\(^\text{3}\) | \(\dfrac{d}{dx}(\tan x) =\sec^2 x\) | \(\displaystyle \int \sec^2 x\,dx=\tan x+C\) |
Cotangent\(^\text{3}\) | \(\dfrac{d}{dx}(\cot x)=-\csc^2 x\) | \(\displaystyle \int \csc^2 x\,dx=-\cot x+C\) |
Secant\(^\text{3}\) | \(\dfrac{d}{dx}(\sec x) =\sec x\tan x\) | \(\displaystyle \int \sec x\tan x\,dx=\sec x+C\) |
Cosecant\(^\text{3}\) | \(\dfrac{d}{dx}(\csc x)=-\csc x\cot x\) | \(\displaystyle \int \csc x\cot x\,dx=-\csc x+C\) |
\(^\text{3}\) These are the integrals which produce the trig functions. We will discuss the integrals of \(\tan x\), \(\cot x\), \(\sec x\) and \(\csc x\), in Calculus 2 in the chapter on Trig Integrals.
Derivative Rule | Integral Rule | |
---|---|---|
Inverse Sine\(^\text{4}\) | \(\dfrac{d}{dx}(\arcsin x) =\dfrac{1}{\sqrt{1-x^2}}\) | \(\displaystyle \int \dfrac{1}{\sqrt{1-x^2}}\,dx=\arcsin x+C\) |
Inverse Tangent\(^\text{4}\) | \(\dfrac{d}{dx}(\arctan x) =\dfrac{1}{1+x^2}\) | \(\displaystyle \int \dfrac{1}{1+x^2}\,dx=\arctan x+C\) |
Inverse Secant\(^\text{4}\) | \(\dfrac{d}{dx}(\mathrm{arcsec}\,x) =\dfrac{1}{x\sqrt{x^2-1}}\) | \(\displaystyle \int \dfrac{1}{x\sqrt{x^2-1}}\,dx=\mathrm{arcsec}\, x+C\) |
Inverse Cosine\(^\text{5}\) | \(\dfrac{d}{dx}(\arccos x)=-\dfrac{1}{\sqrt{1-x^2}}\) | \(\displaystyle \int \dfrac{1}{\sqrt{1-x^2}}\,dx=-\arccos x+C\) |
Inverse Cotangent\(^\text{5}\) | \(\dfrac{d}{dx}(\mathrm{arccot}\,x)=-\dfrac{1}{1+x^2}\) | \(\displaystyle \int \dfrac{1}{1+x^2}\,dx=-\mathrm{arccot}\, x+C\) |
Inverse Cosecant\(^\text{5}\) | \(\dfrac{d}{dx}(\mathrm{arccsc}\,x)=-\dfrac{1}{x\sqrt{x^2-1}}\) | \(\displaystyle \int \dfrac{1}{x\sqrt{x^2-1}}\,dx=-\mathrm{arccsc}\, x+C\) |
\(^\text{4}\) These are the integrals which produce the inverse trig functions. We will discuss the integrals of \(\arcsin x\), \(\arctan x\) and \(\mathrm{arcsec}\, x\), in Calculus 2 in the chapter on Integration by Parts.
\(^\text{5}\) Do not memorize these 3 integrals. They are just alternate forms of the 3 integrals above them.
The following exercise is the same as on a previous page on antiderivative rules for trig functions.
Compute \(\displaystyle \int 2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta\) and \(\displaystyle \int_{\pi/2}^\pi 2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta\).
\(\displaystyle \int 2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta
=\theta^2\sin(\theta)+C\)
\(\displaystyle \int_{\pi/2}^\pi 2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta
=-\dfrac{\pi^2}{4}\)
Since \(\dfrac{d}{d\theta}\theta^2=2\theta\) and \(\dfrac{d}{d\theta}\sin(\theta)=\cos(\theta)\), the Product Rule says \(\dfrac{d}{d\theta}\theta^2\sin(\theta)=2\theta\sin(\theta)+\theta^2\cos(\theta)\). So the indefinite integral is: \[ \int 2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta=\theta^2\sin(\theta)+C \]
By the Fundamental Theorem of Calculus, the definite integral is: \[\begin{aligned} \int_{\pi/2}^\pi &2\theta\sin(\theta)+\theta^2\cos(\theta)\,d\theta =\left[\rule{0pt}{10pt}\theta^2\sin(\theta)\right]_{\pi/2}^\pi \\ &=\pi^2\sin(\pi)-\left(\dfrac{\pi}{2}\right)^2\sin\left(\dfrac{\pi}{2}\right) =-\dfrac{\pi^2}{4} \end{aligned}\]
Compute \(\displaystyle \int \dfrac{x^2}{1+x^2}\,dx\) and \(\displaystyle \int_0^3 \dfrac{x^2}{1+x^2}\,dx\).
Add and subtract \(1\) from the numerator.
\(\displaystyle \int \dfrac{x^2}{1+x^2}\,dx=x-\arctan x+C\)
\(\displaystyle \int_0^3 \dfrac{\rule{0pt}{12pt}x^2}{1+x^2}\,dx=3-\arctan 3\).
We first use a trick of adding and subtracting \(1\) from the numerator. So the integrand becomes: \[ \dfrac{x^2}{1+x^2}=\dfrac{x^2+1-1}{1+x^2}=1-\dfrac{1}{1+x^2} \] So the indefinite integral is: \[ \int \dfrac{x^2}{1+x^2}\,dx =\int \left(1-\dfrac{1}{1+x^2}\right)\,dx =x-\arctan x+C \]
By the Fundamental Theorem of Calculus, the definite integral is: \[\begin{aligned} \int_0^3 \dfrac{x^2}{1+x^2}\,dx &=\left[\rule{0pt}{10pt}x-\arctan x\right]_0^3 \\ &=(3-\arctan 3)-(0-\arctan 0) \\ &=3-\arctan 3 \end{aligned}\] since \(\arctan 0=0\).
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum