The table on a
previous page listed the properties of derivatives and integrals
with respect to algebraic operations. The tables on this page gives
the derivatives and integrals for hyperbolic trig functions and their inverses.
Hyperbolic Trig Functions
Derivative Rule
Integral Rule
Sine
dxd(sinhx)=coshx
∫coshxdx=sinhx+C
Cosine
dxd(coshx)=sinhx
∫sinhxdx=coshx+C
Tangent3
dxd(tanhx)=sech2x
∫sech2xdx=tanhx+C
Cotangent3
dxd(cothx)=−csch2x
∫csch2xdx=−cothx+C
Secant3
dxd(sechx)=−sechxtanhx
∫sechxtanhxdx=−sechx+C
Cosecant3
dxd(cschx)=−cschxcothx
∫cschxcothxdx=−cschx+C
3
These are the integrals which produce the hyperbolic trig functions. We will
discuss the integrals of tanhx, cothx, sechx
and cschx, in Calculus 2 in the chapter on
Trig Integrals.
Inverse Hyperbolic Trig Functions
Derivative Rule
Integral Rule
Inverse Hyperbolic Sine4
dxd(arcsinhx)=1+x21
∫1+x21dx=arcsinhx+C
Inverse Hyperbolic Tangent4
dxd(arctanhx)=1−x21
∫1−x21dx=arctanhx+C
Inverse Hyperbolic Secant4
dxd(arcsechx)=x2(1−x2)−1
∫x2(1−x2)1dx=−arcsechx+C
Inverse Hyperbolic Cosine4
dxd(arccoshx)=x2−11
∫x2−11dx=arccosh+C
Inverse Hyperbolic Cotangent4
dxd(arccothx)=x2−1−1
∫x2−11dx=−arccothx+C
Inverse Hyperbolic Cosecant4
dxd(arccschx)=x2(x2−1)−1
∫x2(x2−1)1dx=−arccschx+C
4
These are the integrals which produce the inverse hyprebolic trig functions.
We will discuss the integrals of arcsinhx, arctanhxarcsechx, arccoshx, arccothx
and arccschx in Calculus 2 in the chapter on
Integration by Parts.
Compute
∫(e2x+1)2e2xdx and
∫01(e2x+1)2e2xdx.
Hint
Write the integrand as a perfect square. Then identify it as
the square of a hyperbolic trig function.
We write the integrand as a perfect square. Then we divide numerator and
denominator by ex, and identify the integrand as the square of a
hyperbolic trig function.
∫(e2x+1)2e2xdx=∫(e2x+1ex)2dx=∫(ex+e−x1)2dx=∫(2coshx1)2dx=∫(2sechx)2dx=∫41sech2xdx=41tanhx+C=41ex+e−xex−e−x+C
By the Fundamental Theorem of Calculus, the definite integral is:
∫01(e2x−1)2e2xdx=[41tanhx]01=41tanh1−41tanh0=41tanh1
since tanh0=0. In terms of exponentials,
∫01(e2x−1)2e2xdx=41e+e−1e−e−1=41e2+1e2−1
We check the indefinite integral by differentiating.
If F=41tanhx then:
F′(x)=41sech2x=41(ex+e−x2)2=(ex+e−x1)2=(e2x+1ex)2=(e2x+1)2e2x
which is the original integrand.
We first use a trick of adding and subtracting 1 from the numerator.
So the integrand becomes:
1−x2−x2=1−x21−x2−1=1−1−x21
So the indefinite integral is:
∫1−x2−x2dx=∫(1−1−x21)dx=x−arctanhx+C
By the Fundamental Theorem of Calculus, the definite integral is:
∫241−x2−x2dx=[x−arctanhx]24=(4−arctanh4)−(2−arctanh2)=2−arctanh4+arctanh2
Placeholder text:
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum