19. Properties of Graphs
b. Value & Limit Information
When \(\lim_{x\to-\infty}f(x)\) or \(\lim_{x\to\infty}f(x)\) is not a finite number, i.e. there is no horizontal asymptote, we may still want to understand the behavior of the function near \(-\infty\) and \(\infty\).
3. Slant Asymptotes (Optional)
A slant asymptote of a function \(f(x)\) is a line \(y=mx+b\) where \[ \lim_{x\to-\infty}f(x)-(mx+b)=0 \quad \text{or} \quad \lim_{x\to\infty}f(x)-(mx+b)=0 \]
A slant asymptote will look something like one of the following: (The asymptote could be at \(+\infty\) or \(-\infty\). The slope could be positive or negative and the approach could be from above or below.)
To find a slant asymptote at \(-\infty\), we compute the limits: \[ m_-=\lim_{x\to-\infty}\dfrac{f(x)}{x} \quad \text{and} \quad b_-=\lim_{x\to-\infty}f(x)-m_-x \] If these limits exist, the slant asymptote is \(y=m_-x+b_-\). Similarly, at \(+\infty\), if the limits: \[ m_+=\lim_{x\to\infty}\dfrac{f(x)}{x} \quad \text{and} \quad b_+=\lim_{x\to\infty}f(x)-m_+x \] exist, the slant asymptote is \(y=m_+x+b_+\).
Find the slant asymptotes of the function \(f(x)=2x-\dfrac{16}{x-2}\).
This is the same function as the example on
two previous pages.
We compute the limits: \[\begin{aligned} m_-&=\lim_{x\to-\infty}\dfrac{f(x)}{x} =\lim_{x\to-\infty}2-\dfrac{16}{x(x-2)}=2 \\ b_-&=\lim_{x\to-\infty}f(x)-2x =\lim_{x\to-\infty}-\dfrac{16}{x-2}=0 \end{aligned}\] So the slant asymptote at \(-\infty\) is \(y=2x\). Similarly: \[\begin{aligned} m_+&=\lim_{x\to\infty}\dfrac{f(x)}{x} =\lim_{x\to\infty}2-\dfrac{16}{x(x-2)}=2 \\ b_+&=\lim_{x\to\infty}f(x)-2x =\lim_{x\to\infty}-\dfrac{16}{x-2}=0 \end{aligned}\] So the slant asymptote at \(\infty\) is also \(y=2x\). We add these facts to the number line:
The plot shows the slant asymptotes \(y=2x\) at both \(\pm\infty\).
Find the asymptotes at \(\pm\infty\) of the function \(f(x)=\dfrac{x^2-3x|x|}{x-3}\).
The slant asymptote at \(-\infty\) is \(y=4x+12\)
The slant asymptote at \(\infty\) is \(y=2x-6\).
We compute the limits: \[\begin{aligned} m_-&=\lim_{x\to-\infty}\dfrac{f(x)}{x} =\lim_{x\to-\infty}\dfrac{x^2-3x|x|}{x(x-3)} \\ &=\lim_{x\to-\infty}\dfrac{4x^2}{x^2-3x}=4 \\ b_-&=\lim_{x\to-\infty}f(x)-4x =\lim_{x\to-\infty}\dfrac{4x^2}{x-3}-4x=0 \\ &=\lim_{x\to-\infty}\dfrac{4x^2-4x^2+12x}{x-3}=12 \end{aligned}\] So the slant asymptote at \(-\infty\) is \(y=4x+12\). Similarly: \[\begin{aligned} m_+&=\lim_{x\to\infty}\dfrac{f(x)}{x} =\lim_{x\to\infty}\dfrac{x^2-3x|x|}{x(x-3)} \\ &=\lim_{x\to\infty}\dfrac{-2x^2}{x^2-3x}=-2 \\ b_+&=\lim_{x\to\infty}f(x)+2x =\lim_{x\to\infty}\dfrac{-2x^2}{x-3}+2x=0 \\ &=\lim_{x\to\infty}\dfrac{-2x^2+2x^2-6x}{x-3}=-6 \end{aligned}\] So the slant asymptote at \(\infty\) is \(y=-2x-6\).
In the plot, we see the slant asymptote at \(-\infty\) is \(y=4x+12\) which is approached from below. And the slant asymptote at \(+\infty\) is \(y=-2x-6\) which is also approached from below.
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum