8. Divergence, Curl and Potentials

Exercises

    Compute the gradient of each scalar field.

  1. f=xyzf=xyz

    Hint

    f=xf,yf,zf \vec\nabla f =\left\langle \partial_x f,\partial_y f,\partial_z f\right\rangle

    [×]

    Answer

    f=yz,xz,xy\vec\nabla f =\left\langle yz,xz,xy\right\rangle

    [×]

    Solution

    f=x(xyz),y(xyz),z(xyz)=yz,xz,xy\begin {aligned} \vec\nabla f &=\left\langle \partial_x(xyz),\partial_y(xyz),\partial_z(xyz)\right\rangle \\ &=\left\langle yz,xz,xy\right\rangle \\ \end{aligned}

    [×]
  2. f=x2y3z4f=x^2y^3z^4

    Answer

    f=2xy3z4,3x2y2z4,4x2y3z3\vec\nabla f =\left\langle 2xy^3z^4,3x^2y^2z^4,4x^2y^3z^3\right\rangle

    [×]

    Solution

    f=x(x2y3z4),y(x2y3z4),z(x2y3z4)=2xy3z4,3x2y2z4,4x2y3z3\begin {aligned} \vec\nabla f &=\left\langle \partial_x(x^2y^3z^4),\partial_y(x^2y^3z^4),\partial_z(x^2y^3z^4)\right\rangle \\ &=\left\langle 2xy^3z^4,3x^2y^2z^4,4x^2y^3z^3\right\rangle \\ \end{aligned}

    [×]
  3. f=x2+y2+z2f=x^2+y^2+z^2

    Answer

    f=2x,2y,2z\vec\nabla f =\left\langle 2x,2y,2z\right\rangle

    [×]

    Solution

    f=x(x2+y2+z2),y(x2+y2+z2),z(x2+y2+z2)=2x,2y,2z\begin {aligned} \vec\nabla f &=\left\langle \partial_x(x^2+y^2+z^2), \partial_y(x^2+y^2+z^2), \partial_z(x^2+y^2+z^2)\right\rangle \\ &=\left\langle 2x,2y,2z\right\rangle \\ \end{aligned}

    [×]
  4. f=zsinxcosyf=z\sin x\cos y

    Answer

    f=zcosxcosy,zsinxsiny,sinxcosy\vec\nabla f =\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle

    [×]

    Solution

    f=x(zsinxcosy),y(zsinxcosy),z(zsinxcosy)=zcosxcosy,zsinxsiny,sinxcosy\begin {aligned} \vec\nabla f &=\left\langle \partial_x(z\sin x\cos y), \partial_y(z\sin x\cos y), \partial_z(z\sin x\cos y)\right\rangle \\ &=\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle \\ \end{aligned}

    [×]
  5. Compute the divergence of each vector field.

  6. F=xy,yz,zx\vec F=\left\langle xy,yz,zx\right\rangle

    Hint

    F=xF1+yF2+zF3 \vec\nabla\cdot\vec F =\partial_x F_1+\partial_y F_2+\partial_z F_3

    [×]

    Answer

    F=y+z+x\vec\nabla\cdot\vec F=y+z+x

    [×]

    Solution

    F=x(xy)+y(yz)+z(zx)=y+z+x\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(xy)+\partial_y(yz)+\partial_z(zx) \\ &=y+z+x \end{aligned}

    [×]
  7. F=yz,xz,xy\vec F=\left\langle yz,xz,xy\right\rangle

    Answer

    F=0\vec\nabla\cdot\vec F=0

    [×]

    Solution

    F=x(yz)+y(xz)+z(xy)=0+0+0=0\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(yz)+\partial_y(xz)+\partial_z(xy) \\ &=0+0+0=0 \end{aligned}

    [×]
  8. F=12z2x,12x2y,12y2z\vec F =\left\langle \dfrac{1}{2}z^2x,\dfrac{1}{2}x^2y,\dfrac{1}{2}y^2z\right\rangle

    Answer

    F=12(x2+y2+z2)\vec\nabla\cdot\vec F =\dfrac{1}{2}(x^2+y^2+z^2)

    [×]

    Solution

    F=x(12z2x)+y(12x2y)+z(12y2z)=12(z2+x2+y2)\begin{aligned} \vec\nabla\cdot\vec F &=\dfrac{\partial}{\partial x}\left(\dfrac{1}{2}z^2x\right) +\dfrac{\partial}{\partial y}\left(\dfrac{1}{2}x^2y\right) +\dfrac{\partial}{\partial z}\left(\dfrac{1}{2}y^2z\right) \\ &=\dfrac{1}{2}(z^2+x^2+y^2) \end{aligned}

    [×]
  9. F=xcosz,ycosz,sinz\vec F=\left\langle x\cos z,y\cos z,\sin z\right\rangle

    Answer

    F=3cosz\vec\nabla\cdot\vec F=3\cos z

    [×]

    Solution

    F=x(xcosz)+y(ycosz)+z(sinz)=cosz+cosz+cosz=3cosz\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x\cos z)+\partial_y(y\cos z)+\partial_z(\sin z) \\ &=\cos z+\cos z+\cos z=3\cos z \end{aligned}

    [×]
  10. F=zcosxcosy,zsinxsiny,sinxcosy\vec F =\left\langle z\cos x\cos y,-z\sin x\sin y, \sin x\cos y\right\rangle

    Answer

    F=2zsinxcosy\vec\nabla\cdot\vec F=-2z\sin x\cos y

    [×]

    Solution

    F=x(zcosxcosy)+y(zsinxsiny)+z(sinxcosy)=zsinxcosyzsinxcosy+0=2zsinxcosy\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(z\cos x\cos y) +\partial_y(-z\sin x\sin y) \\ &\quad+\partial_z(\sin x\cos y) \\ &=-z\sin x\cos y-z\sin x\cos y+0 \\ &=-2z\sin x\cos y \end{aligned}

    [×]
  11. F=x3,y3,z3\vec F=\left\langle x^3,y^3,z^3\right\rangle

    Answer

    F=3x2+3y2+3z2\vec\nabla\cdot\vec F=3x^2+3y^2+3z^2

    [×]

    Solution

    F=x(x3)+y(y3)+z(z3)=3x2+3y2+3z2\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x^3)+\partial_y(y^3)+\partial_z(z^3) \\ &=3x^2+3y^2+3z^2 \end{aligned}

    [×]
  12. F=ex,ey,ez\vec F=\left\langle e^x,e^y,e^z\right\rangle

    Answer

    F=ex+ey+ez\vec\nabla\cdot\vec F=e^x+e^y+e^z

    [×]

    Solution

    F=x(ex)+y(ey)+z(ez)=ex+ey+ez\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(e^x)+\partial_y(e^y)+\partial_z(e^z) \\ &=e^x+e^y+e^z \end{aligned}

    [×]
  13. F=ln(xyz),ln(yxz),ln(zxy)\vec F=\left\langle \ln\left(\dfrac{x}{yz}\right), \ln\left(\dfrac{y}{xz}\right), \ln\left(\dfrac{z}{xy}\right)\right\rangle

    Answer

    F=1x+1y+1z\vec\nabla\cdot\vec F=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}

    [×]

    Solution

    F=xln(xyz)+yln(yxz)+zln(zxy)=yzx1yz+xzy1xz+xyz1xy=1x+1y+1z\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x\ln\left(\dfrac{x}{yz}\right) +\partial_y\ln\left(\dfrac{y}{xz}\right) +\partial_z\ln\left(\dfrac{z}{xy}\right) \\ &=\dfrac{yz}{x}\dfrac{1}{yz} +\dfrac{xz}{y}\dfrac{1}{xz} +\dfrac{xy}{z}\dfrac{1}{xy} \\ &=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \end{aligned}

    F=x(lnxlnylnz)+y(lnylnxlnz)+z(lnzlnxlny)=1x+1y+1z\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(\ln x-\ln y-\ln z) +\partial_y(\ln y-\ln x-\ln z) \\ &\quad+\partial_z(\ln z-\ln x-\ln y) \\ &=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \end{aligned}

    [×]

  14. Compute the divergence of the gradient of f=x2y3z4f=x^2y^3z^4, i.e. f\vec\nabla\cdot\vec\nabla f.

    Answer

    f=2y3z4+6x2yz4+12x2y3z2\vec\nabla\cdot\vec\nabla f=2y^3z^4+6x^2yz^4+12x^2y^3z^2

    [×]

    Solution

    The gradient of ff is: f=2xy3z4,3x2y2z4,4x2y3z3 \vec\nabla f=\left\langle 2xy^3z^4, 3x^2y^2z^4, 4x^2y^3z^3\right\rangle Then the divergence of the gradient is: f=x(2xy3z4)+y(3x2y2z4)+z(4x2y3z3)=2y3z4+6x2yz4+12x2y3z2\begin{aligned} \vec\nabla\cdot\vec\nabla f &=\partial_x(2xy^3z^4)+\partial_y(3x^2y^2z^4)+\partial_z(4x^2y^3z^3) \\ &=2y^3z^4+6x^2yz^4+12x^2y^3z^2 \end{aligned}

    [×]

    Remark

    The divergence of the gradient is an operation called the Laplacian, 2=\nabla^2=\vec\nabla\cdot\vec\nabla, which we will study on a later page. It can be computed directly using the formula: 2f=f=d2fdx2+d2fdy2+d2fdz2 \nabla^2f=\vec\nabla\cdot\vec\nabla f =\dfrac{d^2f}{dx^2}+\dfrac{d^2f}{dy^2}+\dfrac{d^2f}{dz^2}

    [×]
  15. Compute the divergence of the gradient of f=xyzf=xyz, i.e. f\vec\nabla\cdot\vec\nabla f.

    Hint

    The divergence of the gradient is an operation called the Laplacian, 2=\nabla^2=\vec\nabla\cdot\vec\nabla, which we will study on a later page. It can be computed directly using the formula: 2f=f=d2fdx2+d2fdy2+d2fdz2=x2f+y2f+z2f\begin{aligned} \nabla^2f&=\vec\nabla\cdot\vec\nabla f \\ &=\dfrac{d^2f}{dx^2}+\dfrac{d^2f}{dy^2}+\dfrac{d^2f}{dz^2} \\ &=\partial_x^2f+\partial_y^2f+\partial_z^2f \end{aligned}

    [×]

    Answer

    (xyz)=0\vec\nabla\cdot\vec\nabla(xyz)=0

    [×]

    Solution

    The Laplacian is: 2f=f=x2f+y2f+z2f\begin{aligned} \nabla^2f &=\vec\nabla\cdot\vec\nabla f \\ &=\partial_x^2f+\partial_y^2f+\partial_z^2f \end{aligned} We compute the Laplacian directly: 2(xyz)=(xyz)=x2(xyz)+y2(xyz)+z2(xyz)=0+0+0=0\begin{aligned} \nabla^2(xyz) &=\vec\nabla\cdot\vec\nabla(xyz) \\ &=\partial_x^2(xyz)+\partial_y^2(xyz)+\partial_z^2(xyz) \\ &=0+0+0=0 \end{aligned}

    [×]
  16. Compute the curl of each vector field.

  17. F=xy,yz,zx\vec F=\left\langle xy,yz,zx\right\rangle

    Hint

    ×F=ı^ȷ^k^xyzF1F2F3 \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{vmatrix}

    [×]

    Answer

    ×F=y,z,x\vec\nabla\times\vec F =\left\langle -y,-z,-x\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzxyyzzx=ı^(0y)ȷ^(z0)+k^(0x)=y,z,x\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} \\ &=\hat\imath(0-y)-\hat\jmath(z-0)+\hat k(0-x) \\ &=\left\langle -y,-z,-x\right\rangle \end{aligned}

    [×]
  18. F=yz,xz,xy\vec F=\left\langle yz,xz,xy\right\rangle

    Answer

    ×F=00,0,0\vec\nabla\times\vec F =\vec0\equiv\left\langle 0,0,0\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzyzxzxy=ı^(xx)ȷ^(yy)+k^(zz)=0,0,0=0\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ yz & xz & xy \end{vmatrix} \\ &=\hat\imath(x-x)-\hat\jmath(y-y)+\hat k(z-z) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}

    [×]
  19. F=12z2x,12x2y,12y2z\vec F =\left\langle \dfrac{1}{2}z^2x,\dfrac{1}{2}x^2y, \dfrac{1}{2}y^2z\right\rangle

    Answer

    ×F=yz,xz,xy\vec\nabla\times\vec F =\left\langle yz,xz,xy\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyz12z2x12x2y12y2z=ı^(yz0)ȷ^(0zx)+k^(xy0)=yz,xz,xy\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \dfrac{1}{2}z^2x & \dfrac{1}{2}x^2y & \dfrac{1}{2}y^2z \end{vmatrix} \\ &=\hat\imath(yz-0)-\hat\jmath(0-zx)+\hat k(xy-0) \\ &=\left\langle yz,xz,xy\right\rangle \end{aligned}

    [×]
  20. F=xcosz,ycosz,sinz\vec F=\left\langle x\cos z,y\cos z,\sin z\right\rangle

    Answer

    ×F=ysinz,xsinz,0\vec\nabla\times\vec F =\left\langle y\sin z,-x\sin z,0\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzxcoszycoszsinz=ı^(ysinz)ȷ^(0xsinz)+k^(00)=ysinz,xsinz,0\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ x\cos z & y\cos z & \sin z \end{vmatrix} \\ &=\hat\imath(y\sin z)-\hat\jmath(0--x\sin z)+\hat k(0-0) \\ &=\left\langle y\sin z,-x\sin z,0\right\rangle \end{aligned}

    [×]
  21. F=zcosxcosy,zsinxsiny,sinxcosy\vec F =\left\langle z\cos x\cos y,-z\sin x\sin y, \sin x\cos y\right\rangle

    Answer

    ×F=00,0,0\vec\nabla\times\vec F =\vec0\equiv\left\langle 0,0,0\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzzcosxcosyzsinxsinysinxcosy=ı^(sinxsinysinxsiny)ȷ^(cosxcosycosxcosy)+k^(zcosxsinyzcosxsiny)=0,0,0=0\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\cos x\cos y & -z\sin x\sin y & \sin x\cos y \end{vmatrix} \\ &=\hat\imath(-\sin x\sin y--\sin x\sin y) \\ &\quad-\hat\jmath(\cos x\cos y-\cos x\cos y) \\ &\quad+\hat k(-z\cos x\sin y--z\cos x\sin y) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}

    [×]
  22. F=y,x,0\vec F=\left\langle -y,x,0\right\rangle

    Answer

    ×F=0,0,2\vec\nabla\times\vec F =\left\langle 0,0,2\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzyx0=ı^(00)ȷ^(00)+k^(11)=0,0,2\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -y & x & 0 \end{vmatrix} \\ &=\hat\imath(0-0)-\hat\jmath(0-0)+\hat k(1--1) \\ &=\left\langle 0,0,2\right\rangle \end{aligned}

    [×]
  23. F=eyz,exz,exy\vec F=\left\langle e^{yz},e^{xz},e^{xy}\right\rangle

    Answer

    ×F=x(exyexz),y(eyzexy),z(exzeyz)\vec\nabla\times\vec F =\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzeyzexzexy=ı^(xexyxexz)ȷ^(yexyyeyz)+k^(zexzzeyz)=x(exyexz),y(eyzexy),z(exzeyz)\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ e^{yz} & e^{xz} & e^{xy} \end{vmatrix} \\ &=\hat\imath(xe^{xy}-xe^{xz}) -\hat\jmath(ye^{xy}-ye^{yz}) +\hat k(ze^{xz}-ze^{yz}) \\ &=\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle \end{aligned}

    [×]
  24. F=ln(xyz),ln(yxz),ln(zxy)\vec F=\left\langle \ln\left(\dfrac{x}{yz}\right), \ln\left(\dfrac{y}{xz}\right), \ln\left(\dfrac{z}{xy}\right)\right\rangle

    Answer

    ×F==1z1y,1x1z,1y1x\vec\nabla\times\vec F= =\left\langle \dfrac{1}{z}-\,\dfrac{1}{y}, \dfrac{1}{x}-\,\dfrac{1}{z}, \dfrac{1}{y}-\,\dfrac{1}{x}\right\rangle

    [×]

    Solution

    ×F=ı^ȷ^k^xyzlnxlnylnzlnylnxlnzlnzlnxlny=ı^(1y1z)ȷ^(1x1z)+k^(1x1y)=1z1y,1x1z,1y1x\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \ln x-\ln y-\ln z & \ln y-\ln x-\ln z & \ln z-\ln x-\ln y \end{vmatrix} \\ &=\hat\imath\left(-\,\dfrac{1}{y}--\,\dfrac{1}{z}\right) -\hat\jmath\left(-\,\dfrac{1}{x}--\,\dfrac{1}{z}\right) +\hat k \left(-\,\dfrac{1}{x}--\,\dfrac{1}{y}\right) \\ &=\left\langle \dfrac{1}{z}-\,\dfrac{1}{y}, \dfrac{1}{x}-\,\dfrac{1}{z}, \dfrac{1}{y}-\,\dfrac{1}{x}\right\rangle \end{aligned}

    [×]

  25. Compute the curl of the gradient of f=x2y3z4f=x^2y^3z^4, i.e. ×f\vec\nabla\times\vec\nabla f.

    Answer

    ×(x2y3z4)=00,0,0\vec\nabla\times\vec\nabla(x^2y^3z^4)=\vec0\equiv\left\langle 0,0,0\right\rangle

    [×]

    Solution

    The gradient of ff is: f=2xy3z4,3x2y2z4,4x2y3z3 \vec\nabla f=\left\langle 2xy^3z^4, 3x^2y^2z^4, 4x^2y^3z^3\right\rangle Then the curl of the gradient is: ×f=ı^ȷ^k^xyz2xy3z43x2y2z44x2y3z3=ı^(12x2y2z312x2y2z3)ȷ^(8xy3z38xy3z3)+k^(6xy2z46xy2z4)=0,0,0=0\begin{aligned} \vec\nabla\times\vec\nabla f &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ 2xy^3z^4 & 3x^2y^2z^4 & 4x^2y^3z^3 \end{vmatrix} \\ &=\hat\imath(12x^2y^2z^3-12x^2y^2z^3) \\ &\quad-\hat\jmath(8xy^3z^3-8xy^3z^3) \\ &\quad+\hat k (6xy^2z^4-6xy^2z^4) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}

    [×]
  26. Compute the curl of the gradient of f=xyzf=xyz, i.e. ×f\vec\nabla\times\vec\nabla f.

    Answer

    ×(xyz)=00,0,0\vec\nabla\times\vec\nabla(xyz)=\vec0\equiv\left\langle 0,0,0\right\rangle

    [×]

    Solution

    The gradient of ff is: f=yz,xz,xy \vec\nabla f=\left\langle yz, xz, xy\right\rangle Then the curl of the gradient is: ×f=ı^ȷ^k^xyzyzxzxy=ı^(xx)ȷ^(yy)+k^(zz)=0,0,0=0\begin{aligned} \vec\nabla\times\vec\nabla f &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ yz & xz & xy \end{vmatrix} \\ &=\hat\imath(x-x)-\hat\jmath(y-y)+\hat k(z-z) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}

    [×]

    Remark

    It is no coincidence that the curl of the gradient is 0\vec0 in both this and the previous problem. We will see on a later page that ×f=0\vec\nabla\times\vec\nabla f=\vec0 for any function ff.

    [×]

  27. Compute the divergence of the curl of F=xy,yz,zx\vec F=\left\langle xy,yz,zx\right\rangle, i.e. ×F\vec\nabla\cdot\vec\nabla\times\vec F.

    Answer

    ×xy,yz,zx=0\vec\nabla\cdot\vec\nabla\times\left\langle xy,yz,zx\right\rangle =0

    [×]

    Solution

    The curl of F\vec F is: ×F=ı^ȷ^k^xyzxyyzzx=y,z,x \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} =\left\langle -y,-z,-x\right\rangle Then the divergence of the curl is: ×F=x(y)+y(z)+z(x)=0+0+0=0\begin{aligned} \vec\nabla\cdot\vec\nabla\times\vec F &=\partial_x(-y)+\partial_y(-z)+\partial_z(-x) \\ &=0+0+0=0 \end{aligned}

    [×]
  28. Compute the divergence of the curl of F=eyz,exz,exy\vec F=\left\langle e^{yz},e^{xz},e^{xy}\right\rangle, i.e. ×F\vec\nabla\cdot\vec\nabla\times\vec F.

    Answer

    ×F=0\vec\nabla\cdot\vec\nabla\times\vec F=0

    [×]

    Solution

    The curl of F\vec F is: ×F=ı^ȷ^k^xyzeyzexzexy=x(exyexz),y(eyzexy),z(exzeyz)\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ e^{yz} & e^{xz} & e^{xy} \end{vmatrix} \\ &=\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle \end{aligned} Then the divergence of the curl is: ×F=x[x(exyexz)]+y[y(eyzexy)]+z[z(exzeyz)]=[(exyexz)+x(yexyzexz)]+[(eyzexy)+y(zeyzxexy)]+[(exzeyz)+z(xexzyeyz)]=0\begin{aligned} \vec\nabla\cdot\vec\nabla\times\vec F &=\partial_x[x(e^{xy}-e^{xz})] \\ &\quad+\partial_y[y(e^{yz}-e^{xy})] \\ &\quad+\partial_z[z(e^{xz}-e^{yz})] \\ &=[(e^{xy}-e^{xz})+x(ye^{xy}-ze^{xz})] \\ &\quad+[(e^{yz}-e^{xy})+y(ze^{yz}-xe^{xy})] \\ &\quad+[(e^{xz}-e^{yz})+z(xe^{xz}-ye^{yz})] \\ &=0 \end{aligned}

    [×]

    Remark

    It is no coincidence that the divergence of the curl is 00 in both this and the previous problem. We will see on a later page that ×F=0\vec\nabla\cdot\vec\nabla\times\vec F=0 for any vector field F\vec F.

    [×]

  29. Compute the curl of the curl of F=xy,yz,zx\vec F=\left\langle xy,yz,zx\right\rangle, i.e. ××F\vec\nabla\times\vec\nabla\times\vec F.

    Answer

    ××xy,yz,zx=1,1,1\vec\nabla\times\vec\nabla\times\left\langle xy,yz,zx\right\rangle =\left\langle 1,1,1\right\rangle

    [×]

    Solution

    The curl of F\vec F is: ×F=ı^ȷ^k^xyzxyyzzx=y,z,x \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} =\left\langle -y,-z,-x\right\rangle Then the curl of the curl is: ××F=ı^ȷ^k^xyzyzx=1,1,1\begin{aligned} \vec\nabla\times\vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -y & -z & -x \end{vmatrix} =\left\langle 1,1,1\right\rangle \end{aligned}

    [×]

    Remark

    Although there is an identity for the curl of the curl which we will learn on a later page, it is not very useful in computations.

    [×]
  30. If f=2xcoszf=2x\cos z and g=2ysinzg=2y\sin z, compute (fg)\vec\nabla(fg) in two ways.

    1. Find fgf\vec\nabla g and gfg\vec\nabla f and add them to get (fg)\vec\nabla(fg).

      Answer

      (fg)=2ysin(2z),2xsin(2z),4xycos(2z)=4ysinzcosz,4xsinzcosz,4xycos2z4xysin2z\begin{aligned} \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}

      [×]

      Solution

      fg=2xcosz0,2sinz,2ycosz=0,4xsinzcosz,4xycos2zgf=2ysinz2cosz,0,2xsinz=4ysinzcosz,0,4xysin2z(fg)=fg+gf=4ysinzcosz,4xsinzcosz,4xycos2z4xysin2z\begin{aligned} f\vec\nabla g &=2x\cos z\left\langle 0,2\sin z,2y\cos z\right\rangle \\ &=\left\langle 0,4x\sin z\cos z,4xy\cos^2 z\right\rangle \\[6pt] g\vec\nabla f &=2y \sin z\left\langle 2\cos z,0,-2x\sin z\right\rangle \\ &=\left\langle 4y\sin z\cos z,0,-4xy\sin^2 z\right\rangle \\[6pt] \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}

      [×]
    2. Find fgfg and then (fg)\vec\nabla(fg).

      Answer

      (fg)=2ysin(2z),2xsin(2z),4xycos(2z)=4ysinzcosz,4xsinzcosz,4xycos2z4xysin2z\begin{aligned} \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}

      [×]

      Solution

      fg=4xycoszsinz=2xysin(2z)(fg)=2ysin(2z),2xsin(2z),4xycos(2z)=4ysinzcosz,4xsinzcosz,4xycos2z4xysin2z\begin{aligned} fg&=4xy\cos z\sin z=2xy\sin(2z) \\[6pt] \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}

      [×]
  31. At a point PP, we know: f=3f=2,1,3g=2g=2,1,4\begin{aligned} f&=3\qquad& \vec\nabla f&=\left\langle -2,1,3\right\rangle \\ g&=2\qquad& \vec\nabla g&=\left\langle 2,-1,4\right\rangle \end{aligned} Find (fg)\vec\nabla(fg) at PP.

    Answer

    (fg)=2,1,18\vec\nabla(fg) =\left\langle 2,-1,18\right\rangle

    [×]

    Solution

    Using the formula, we have: (fg)=fg+gf=32,1,4+22,1,3=6,3,12+4,2,6=2,1,18\begin{aligned} \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=3\left\langle 2,-1,4\right\rangle+2\left\langle -2,1,3\right\rangle \\ &=\left\langle 6,-3,12\right\rangle+\left\langle -4,2,6\right\rangle \\ &=\left\langle 2,-1,18\right\rangle \end{aligned}

    [×]
  32. If f=xyzf=xyz and G=xz,yz,z2\vec G=\left\langle xz,yz,z^2\right\rangle, compute (fG)\vec\nabla\cdot (f\vec G) in two ways.

    1. Find (f)G(\vec\nabla f)\cdot\vec G and fGf\vec\nabla\cdot\vec G and add them to get (fG)\vec\nabla\cdot(f\vec G).

      Answer

      (fG)=7xyz2\vec\nabla\cdot(f\vec G) =7xyz^2

      [×]

      Solution

      f=yz,xz,xy(f)G=xyz2+xyz2+xyz2=3xyz2G=z+z+2z=4zfG=4xyz2(fG)=(f)G+fG=3xyz2+4xyz2=7xyz2\begin{aligned} \vec\nabla f &=\left\langle yz,xz,xy\right\rangle \\ (\vec\nabla f)\cdot\vec G &=xyz^2+xyz^2+xyz^2=3xyz^2 \\[6pt] \vec\nabla\cdot\vec G &=z+z+2z=4z \\ f\vec\nabla\cdot\vec G &=4xyz^2 \\[6pt] \vec\nabla\cdot(f\vec G) &=(\vec\nabla f)\cdot\vec G +f\vec\nabla\cdot\vec G \\ &=3xyz^2+4xyz^2=7xyz^2 \end{aligned}

      [×]
    2. Find fGf\vec G and then (fG)\vec\nabla\cdot(f\vec G).

      Answer

      (fG)==7xyz2\vec\nabla\cdot(f\vec G) ==7xyz^2

      [×]

      Solution

      fG=xyzxz,yz,z2=x2yz2,xy2z2,xyz3(fG)=2xyz2+2xyz2+3xyz2=7xyz2\begin{aligned} f\vec G &=xyz\left\langle xz,yz,z^2\right\rangle \\ &=\left\langle x^2yz^2,xy^2z^2,xyz^3\right\rangle \\[6pt] \vec\nabla\cdot(f\vec G) &=2xyz^2+2xyz^2+3xyz^2=7xyz^2 \end{aligned}

      [×]
  33. At a point PP, we know: F=4,2,1×F=2,3,2G=1,3,2×G=2,1,4\begin{aligned} \vec F&=\left\langle 4,-2,1\right\rangle\qquad& \vec\nabla\times\vec F&=\left\langle 2,3,-2\right\rangle \\ \vec G&=\left\langle 1,-3,2\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle -2,1,4\right\rangle \end{aligned} Find (F×G)\vec\nabla\cdot(\vec F\times\vec G) at PP.

    Answer

    (F×G)=5\vec\nabla\cdot(\vec F\times\vec G) =-5

    [×]

    Solution

    Using the formula, we have: (F×G)=×FGF×G=2,3,21,3,24,2,12,1,4=(294)(82+4)=5\begin{aligned} \vec\nabla\cdot(\vec F\times\vec G) &=\vec\nabla\times\vec F\cdot\vec G-\vec F\cdot\vec\nabla\times\vec G \\ &=\left\langle 2,3,-2\right\rangle\cdot\left\langle 1,-3,2\right\rangle -\left\langle 4,-2,1\right\rangle\cdot\left\langle -2,1,4\right\rangle \\ &=(2-9-4)-(-8-2+4)=-5 \end{aligned}

    [×]
  34. If f=xyzf=xyz and G=yz,xz,z2\vec G=\left\langle -yz,xz,z^2\right\rangle, compute ×(fG)\vec\nabla\times (f\vec G) in two ways.

    1. Find (f)×G(\vec\nabla f)\times\vec G and f×Gf\vec\nabla\times\vec G and add them to get ×(fG)\vec\nabla\times(f\vec G).

      Answer

      ×(fG)=xz32x2yz,yz32xy2z,4xyz2\vec\nabla\times(f\vec G) =\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle

      [×]

      Solution

      f=yz,xz,xy(f)×G=ı^ȷ^k^yzxzxyyzxzz2=ı^(xz3x2yz)ȷ^(yz3xy2z)+k^(xyz2xyz2)=xz3x2yz,yz3xy2z,2xyz2×G=ı^ȷ^k^xyzyzxzz2=ı^(0x)ȷ^(0y)+k^(zz)=x,y,2zf×G=x2yz,xy2z,2xyz2×(fG)=(f)×G+f×G=xz32x2yz,yz32xy2z,4xyz2\begin{aligned} \vec\nabla f &=\left\langle yz,xz,xy\right\rangle \\[6pt] (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ yz & xz & xy \\ -yz & xz & z^2 \end{vmatrix} \\ &=\hat\imath(xz^3-x^2yz)-\hat\jmath(yz^3--xy^2z) \\ &\quad+\hat k(xyz^2--xyz^2) \\ &=\left\langle xz^3-x^2yz,-yz^3-xy^2z,2xyz^2\right\rangle \\[6pt] \vec\nabla\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -yz & xz & z^2 \end{vmatrix} \\ &=\hat\imath(0-x)-\hat\jmath(0--y) +\hat k(z--z) \\ &=\left\langle -x,-y,2z\right\rangle \\[6pt] f\vec\nabla\times\vec G &=\left\langle -x^2yz,-xy^2z,2xyz^2\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle \end{aligned}

      [×]
    2. Find fGf\vec G and then ×(fG)\vec\nabla\times(f\vec G).

      Answer

      ×(fG)=xz32x2yz,yz32xy2z,4xyz2\vec\nabla\times(f\vec G) =\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle

      [×]

      Solution

      fG=xy2z2,x2yz2,xyz3×(fG)=ı^ȷ^k^xyzxy2z2x2yz2xyz3=ı^(xz32x2yz)ȷ^(yz32xy2z)+k^(2xyz22xyz2)=xz32x2yz,yz32xy2z,4xyz2\begin{aligned} f\vec G &=\left\langle -xy^2z^2,x^2yz^2,xyz^3\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -xy^2z^2 & x^2yz^2 & xyz^3 \end{vmatrix} \\ &=\hat\imath(xz^3-2x^2yz)-\hat\jmath(yz^3--2xy^2z) +\hat k(2xyz^2--2xyz^2) \\ &=\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle \end{aligned}

      [×]
  35. At a point PP, we know: f=3f=3,4,5G=3,2,4×G=2,1,3\begin{aligned} f&=3\qquad& \vec\nabla f&=\left\langle 3,4,5\right\rangle \\ \vec G&=\left\langle -3,2,4\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle 2,-1,3\right\rangle \end{aligned} Find ×(fG)\vec\nabla\times(f\vec G) at PP.

    Answer

    ×(fG)=12,30,27\vec\nabla\times(f\vec G) =\left\langle 12,-30,27\right\rangle

    [×]

    Solution

    (f)×G=ı^ȷ^k^345324=ı^(1610)ȷ^(12+15)+k^(6+12)=6,27,18f×G=32,1,3=6,3,9×(fG)=(f)×G+f×G=12,30,27\begin{aligned} (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 3 & 4 & 5 \\ -3 & 2 & 4 \end{vmatrix} \\ &=\hat\imath(16-10)-\hat\jmath(12+15)+\hat k(6+12) \\ &=\left\langle 6,-27,18\right\rangle \\[6pt] f\vec\nabla\times\vec G &=3\left\langle 2,-1,3\right\rangle =\left\langle 6,-3,9\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle 12,-30,27\right\rangle \end{aligned}

    [×]
  36. If f=sinxcosyf=\sin x\cos y, compute the Laplacian 2f\nabla^2f and show it satisfies 2f=2f\nabla^2f=-2f.

    Answer

    2f=2sinxcosy=2f\nabla^2f=-2\sin x\cos y=-2f

    [×]

    Solution

    2f=x2(sinxcosy)+y2(sinxcosy)=x(cosxcosy)+y(sinxsiny)=sinxcosysinxcosy=2sinxcosy=2f\begin{aligned} \nabla^2f &=\partial_x^2(\sin x\cos y)+\partial_y^2(\sin x\cos y) \\ &=\partial_x(\cos x\cos y)+\partial_y(-\sin x\sin y) \\ &=-\sin x\cos y-\sin x\cos y=-2\sin x\cos y=-2f \\ \end{aligned}

    [×]
  37. If f=x2+y22z2f=x^2+y^2-2z^2, compute the Laplacian 2f\nabla^2f and show it satisfies the Laplace equation 2f=0\nabla^2f=0.

    Answer

    2f=0\nabla^2f=0

    [×]

    Solution

    2f=x2(x2+y22z2)+y2(x2+y22z2)+z2(x2+y22z2)=x(2x)+y(2y)+z(4z)=2+24=0\begin{aligned} \nabla^2f &=\partial_x^2(x^2+y^2-2z^2)+\partial_y^2(x^2+y^2-2z^2)+\partial_z^2(x^2+y^2-2z^2) \\ &=\partial_x(2x)+\partial_y(2y)+\partial_z(-4z) \\ &=2+2-4=0 \\ \end{aligned}

    [×]
  38. If f=zsinxcosyf=z\sin x\cos y, compute the curl of the gradient of ff, i.e. ×f\vec\nabla\times\vec\nabla f.

    Answer

    ×f=0\vec\nabla\times\vec\nabla f=\vec0

    [×]

    Solution

    For any function: ×f=0 \vec\nabla\times\vec\nabla f=\vec0

    [×]
  39. If F=ysinz,xcosz,xy\vec F=\left\langle y\sin z,x\cos z,xy\right\rangle, compute the divergence of the curl of F\vec F, i.e. ×F\vec\nabla\cdot\vec\nabla\times\vec F.

    Answer

    ×F=0\vec\nabla\cdot\vec\nabla\times\vec F=0

    [×]

    Solution

    For any vector field: ×F=0 \vec\nabla\cdot\vec\nabla\times\vec F=0

    [×]
  40. Verify that F=cos2xF=\cos^2 x and G=sin2xG=-\sin^2 x are both antiderivatives of f=2sinxcosxf=-2\sin x\cos x. Why is this possible?

    Check

    By chain rule: F=2(cosx)(sinx)=2sinxcosxF'=2(\cos x)(-\sin x)=-2\sin x\cos x Similarly: G=2(sinx)(cosx)=2sinxcosxG'=-2(\sin x)(\cos x)=-2\sin x\cos x This is possible because FF and GG differ by a constant: cos2x=sin2x+1\cos^2 x=-\sin^2 x +1

    [×]
  41. Verify that f=xy2z3f=xy^2z^3 is a scalar potential for F=y2z3,2xyz3,3xy2z2\vec F=\left\langle y^2z^3,2xyz^3,3xy^2z^2\right\rangle

    Check

    The gradient of f=xy2z3f=xy^2z^3 is: f=y2z3,2xyz3,3xy2z2=F \vec\nabla f=\left\langle y^2z^3,2xyz^3,3xy^2z^2\right\rangle=\vec F

    [×]
  42. Verify that f=zsinxcosyf=z\sin x\cos y is a scalar potential for F=zcosxcosy,zsinxsiny,sinxcosy\vec F=\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle

    Check

    The gradient of f=zsinxcosyf=z\sin x\cos y is: f=zcosxcosy,zsinxsiny,sinxcosy=F \vec\nabla f =\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle =\vec F

    [×]
  43. Verify that A=xy,yz,zx\vec A=\langle xy,yz,zx\rangle is a vector potential for F=y,z,x\vec F=\left\langle -y,-z,-x\right\rangle

    Check

    The curl of A=yz,xz,xy\vec A=\left\langle yz,xz,xy\right\rangle is: ×A=ı^ȷ^k^xyzxyyzzx=0y,0z,0x=F\begin{aligned} \vec\nabla\times\vec A &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} \\ &=\left\langle 0-y,0-z,0-x\right\rangle=\vec F \end{aligned}

    [×]
  44. Verify that A=zsiny,xsinz,ysinx\vec A=\left\langle z\sin y,x\sin z,y\sin x\right\rangle and A=zsinyyzcosx,xsinzzsinx,0\vec A=\left\langle z\sin y-yz\cos x,x\sin z-z\sin x,0\right\rangle are both vector potentials for F=sinxxcosz,sinyycosx,sinzzcosy\vec F=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle

    Check

    The curl of A=xsiny,ysinz,zsinx\vec A=\left\langle x\sin y,y\sin z,z\sin x\right\rangle is: ×A=ı^ȷ^k^xyzzsinyxsinzysinx=sinxxcosz,sinyycosx,sinzzcosy=F\begin{aligned} \vec\nabla&\times\vec A =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\sin y & x\sin z & y\sin x \end{vmatrix} \\ &=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle \\ &=\vec F \end{aligned}

    The curl of A=zsinyyzcosx,xsinzzsinx,0\vec A=\left\langle z\sin y-yz\cos x,x\sin z-z\sin x,0\right\rangle is: ×A=ı^ȷ^k^xyzzsinyyzcosxxsinzzsinx0=xcosz+sinx,sinyycosx,sinzzcosxzcosy+zcosx=sinxxcosz,sinyycosx,sinzzcosy=F\begin{aligned} \vec\nabla&\times\vec A =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\sin y-yz\cos x & x\sin z-z\sin x & 0 \end{vmatrix} \\ &=\left\langle -x\cos z+\sin x,\sin y-y\cos x,\right. \\ &\qquad\qquad\qquad\left.\sin z-z\cos x-z\cos y+z\cos x\right\rangle \\ &=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle \\ &=\vec F \end{aligned}

    [×]
  45. Find a scalar potential for each vector field or show one does not exist.

  46. F=y+z,x+z,x+y\vec F=\left\langle y+z,x+z,x+y\right\rangle

    Hint

    A scalar potential for F\vec F is any function ff satisfying f=F\vec\nabla f=\vec F. Solve the equations: xf=F1yf=F2zf=F3 \partial_x f=F_1 \qquad \partial_y f=F_2 \qquad \partial_z f=F_3 for a single function ff.

    [×]

    Answer

    f=xy+xz+yzf=xy+xz+yz

    [×]

    Solution

    We solve: xf=y+zyf=x+zzf=x+y \partial_x f=y+z \qquad \partial_y f=x+z \qquad \partial_z f=x+y The xx-antiderivative of the 1st1^\text{st} equation is: f=xy+xz+g(y,z) f=xy+xz+g(y,z) The yy-antiderivative of the 2nd2^\text{nd} equation is: f=xy+yz+h(x,z) f=xy+yz+h(x,z) The zz-antiderivative of the 3rd3^\text{rd} equation is: f=xz+yz+k(x,y) f=xz+yz+k(x,y) A scalar potential which satisfies all three conditions is: f=xy+xz+yz f=xy+xz+yz where g(y,z)=yzg(y,z)=yz, h(x,z)=xzh(x,z)=xz and k(x,y)=xyk(x,y)=xy.

    [×]
  47. F=yzcos(xyz),xzcos(xyz),xycos(xyz)\vec F=\left\langle yz\cos(xyz),xz\cos(xyz),xy\cos(xyz)\right\rangle

    Answer

    f=sin(xyz)f=\sin(xyz)

    [×]

    Solution

    We solve: xf=yzcos(xyz)yf=xzcos(xyz)zf=xycos(xyz) \partial_x f=yz\cos(xyz) \qquad \partial_y f=xz\cos(xyz) \qquad \partial_z f=xy\cos(xyz) The xx-antiderivative of the 1st1^\text{st} equation, the yy-antiderivative of the 2nd2^\text{nd} equation and the zz-antiderivative of the 3rd3^\text{rd} equation are all: f=sin(xyz) f=\sin(xyz) which is therefore the scalar potential.

    [×]
  48. F=y2+2xz,2xy3y2z,x2y32z\vec F=\left\langle y^2+2xz,2xy-3y^2z,x^2-y^3-2z\right\rangle

    Hint

    Successively solve the equations: xf=F1yf=F2zf=F3 \partial_x f=F_1 \qquad \partial_y f=F_2 \qquad \partial_z f=F_3 If you reach a contradiction, there is no solution.

    [×]

    Answer

    f=xy2+x2zy3zz2+Cf=xy^2+x^2z-y^3z-z^2+C

    [×]

    Solution

    We solve: xf=y2+2xzyf=2xy3y2zzf=x2y32z \partial_x f=y^2+2xz \qquad \partial_y f=2xy-3y^2z \qquad \partial_z f=x^2-y^3-2z The xx-antiderivative of the 1st1^\text{st} equation is: f=xy2+x2z+g(y,z) f=xy^2+x^2z+g(y,z) This needs to satisfy the the 2nd2^\text{nd} equation. So we compute yf\partial_y f and plug into the 2nd2^\text{nd} equation: 2xy+yg=2xy3y2zoryg=3y2z 2xy+\partial_y g=2xy-3y^2z \qquad \text{or} \qquad \partial_y g=-3y^2z The solution is g(y,z)=y3z+h(z)g(y,z)=-y^3z+h(z). So: f=xy2+x2zy3z+h(z) f=xy^2+x^2z-y^3z+h(z) This needs to satisfy the the 3rd3^\text{rd} equation. So we compute zf\partial_z f and plug into the 3rd3^\text{rd} equation: x2y3+h(z)=x2y32zorh(z)=2z x^2-y^3+h'(z)=x^2-y^3-2z \qquad \text{or} \qquad h'(z)=-2z A solution is h(z)=z2+Ch(z)=-z^2+C. So a scalar potential is: f=xy2+x2zy3zz2+C f=xy^2+x^2z-y^3z-z^2+C

    [×]
  49. F=y2+2xz,2xy+3y2z,x2y32z\vec F=\left\langle y^2+2xz,2xy+3y^2z,x^2-y^3-2z\right\rangle

    Answer

    There is no scalar potential. The contradiction is shown in the solution and in the remark.

    [×]

    Solution

    We solve: xf=y2+2xzyf=2xy+3y2zzf=x2y32z \partial_x f=y^2+2xz \qquad \partial_y f=2xy+3y^2z \qquad \partial_z f=x^2-y^3-2z The xx-antiderivative of the 1st1^\text{st} equation is: f=xy2+x2z+g(y,z) f=xy^2+x^2z+g(y,z) This needs to satisfy the the 2nd2^\text{nd} equation. So we compute yf\partial_y f and plug into the 2nd2^\text{nd} equation: 2xy+yg=2xy+3y2zoryg=3y2z 2xy+\partial_y g=2xy+3y^2z \qquad \text{or} \qquad \partial_y g=3y^2z The solution is g(y,z)=y3z+h(z)g(y,z)=y^3z+h(z). So: f=xy2+x2z+y3z+h(z) f=xy^2+x^2z+y^3z+h(z) This needs to satisfy the the 3rd3^\text{rd} equation. So we compute zf\partial_z f and plug into the 3rd3^\text{rd} equation: x2+y3+h(z)=x2y32zorh(z)=2y32z x^2+y^3+h'(z)=x^2-y^3-2z \qquad \text{or} \qquad h'(z)=-2y^3-2z This is a contradiction because hh cannot be a function of yy. So there is no scalar potential.

    [×]

    Check

    To verify there is no scalar potential, we compute the curl: ×F=ı^ȷ^k^xyzy2+2xz2xy+3y2zx2y32z=ı^(3y23y2)ȷ^(2x2x)+k^(2y2y)=6y2,0,0\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ y^2+2xz & 2xy+3y^2z & x^2-y^3-2z \end{vmatrix} \\ &=\hat\imath(-3y^2-3y^2) -\hat\jmath(2x-2x) +\hat k (2y-2y) \\ &=\left\langle -6y^2,0,0\right\rangle \end{aligned} Since this is not 0\vec0, there cannot be a scalar potential.

    [×]
  50. F=cosxcosy,sinxsiny,sec2z\vec F=\left\langle \cos x\cos y,\sin x\sin y,\sec^2 z\right\rangle

    Answer

    There is no scalar potential, since the curl of F\vec F is not 0\vec0.

    [×]

    Solution

    We first compute the curl: ×F=ı^ȷ^k^xyzcosxcosysinxsinysec2z=ı^(00)ȷ^(00)+k^(cosxsiny+cosxsiny)=0,0,2cosxsiny\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \cos x\cos y & \sin x\sin y & \sec^2 z \end{vmatrix} \\ &=\hat\imath(0-0) -\hat\jmath(0-0) +\hat k (\cos x\sin y+\cos x\sin y)\\ &=\left\langle 0,0,2\cos x\sin y\right\rangle \end{aligned} Since this is not 0\vec0, there is no scalar potential.

    [×]
  51. F=cosxcosy,sinxsiny,sec2z\vec F=\left\langle \cos x\cos y,-\sin x\sin y,\sec^2 z\right\rangle

    Answer

    f=sinxcosy+tanzf=\sin x\cos y+\tan z

    [×]

    Solution

    We first compute the curl: ×F=ı^ȷ^k^xyzcosxcosysinxsinysec2z=ı^(00)ȷ^(00)+k^(cosxsiny+cosxsiny)=0\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \cos x\cos y & -\sin x\sin y & \sec^2 z \end{vmatrix} \\ &=\hat\imath(0-0) -\hat\jmath(0-0) +\hat k (-\cos x\sin y+\cos x\sin y) =\vec0 \end{aligned} Since this is 0\vec0, we expect there is a potential and solve: xf=cosxcosyyf=sinxsinyzf=sec2z \partial_x f=\cos x\cos y \qquad \partial_y f=-\sin x\sin y \qquad \partial_z f=\sec^2 z The xx-antiderivative of the 1st1^\text{st} equation is: f=sinxcosy+g(y,z) f=\sin x\cos y+g(y,z) This needs to satisfy the the 2nd2^\text{nd} equation. So we compute yf\partial_y f and plug into the 2nd2^\text{nd} equation: sinxsiny+yg=sinxsinyoryg=0 -\sin x\sin y+\partial_y g=-\sin x\sin y \qquad \text{or} \qquad \partial_y g=0 The solution is g(y,z)=h(z)g(y,z)=h(z). (Don't say g=0g=0 or you will not get a solution!) So: f=sinxcosy+h(z) f=\sin x\cos y+h(z) This needs to satisfy the the 3rd3^\text{rd} equation. So we compute zf\partial_z f and plug into the 3rd3^\text{rd} equation: h(z)=sec2zorh(z)=tanz h'(z)=\sec^2 z \qquad \text{or} \qquad h(z)=\tan z Therefore, a scalar potential is: f=sinxcosy+tanz f=\sin x\cos y+\tan z

    [×]

    Remark

    In this case, computing the curl was a waste of time. But we could not know this in advance!

    [×]
  52. Find a vector potential for each vector field or show one does not exist.

  53. F=x,y,yx\vec F=\left\langle -x,y,y-x\right\rangle

    Hint

    A vector potential for F=F1,F2,F3\vec F=\left\langle F_1,F_2,F_3\right\rangle is any vector field A=A1,A2,A3\vec A=\left\langle A_1,A_2,A_3\right\rangle satisfying ×A=F\vec\nabla\times\vec A=\vec F. So we need to solve the equations: yA3zA2=F1zA1xA3=F2xA2yA1=F3\begin{aligned} \partial_y A_3-\partial_z A_2&=F_1 \\ \partial_z A_1-\partial_x A_3&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned} for A1A_1, A2A_2 and A3A_3. There is always a solution with A3=0A_3=0. So we actually need to solve: zA2=F1zA1=F2xA2yA1=F3\begin{aligned} \partial_z A_2&=-F_1 \\ \partial_z A_1&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned}

    [×]

    Answer

    A=yz+xy,xz+xy,0\vec A=\left\langle yz+xy,xz+xy,0\right\rangle
    There are many other solutions.

    [×]

    Solution

    We assume A3=0A_3=0. So we need to solve: zA2=F1=xzA1=F2=yxA2yA1=F3=yx\begin{aligned} \partial_z A_2&=-F_1=x \\ \partial_z A_1&=F_2=y \\ \partial_x A_2-\partial_y A_1&=F_3=y-x \end{aligned} The first 22 equations say: A2=xz+f(x,y)A1=yz+g(x,y) A_2=xz+f(x,y) \qquad A_1=yz+g(x,y) We substitute into the 3rd3^\text{rd} equation: z+xfzyg=yx z+\partial_x f-z-\partial_y g=y-x One solution is f=xyf=xy and g=xyg=xy. So A=yz+xy,xz+xy,0 \vec A=\left\langle yz+xy,xz+xy,0\right\rangle There are many other solutions.

    [×]
  54. F=xcosz,ycosz,2x2sinz\vec F=\left\langle x\cos z,y\cos z,2x-2\sin z\right\rangle

    Hint

    Successively solve the equations: zA2=F1zA1=F2xA2yA1=F3\begin{aligned} \partial_z A_2&=-F_1 \\ \partial_z A_1&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned} If you reach a contradiction, there is no solution.

    [×]

    Answer

    A=ysinz,xsinz+x2,0\vec A=\left\langle y\sin z,-x\sin z+x^2,0\right\rangle
    There are many other solutions.

    [×]

    Solution

    We assume A3=0A_3=0. So we need to solve: zA2=F1=xcoszzA1=F2=ycoszxA2yA1=F3=2x2sinz\begin{aligned} \partial_z A_2&=-F_1=-x\cos z \\ \partial_z A_1&=F_2=y\cos z \\ \partial_x A_2-\partial_y A_1&=F_3=2x-2\sin z \end{aligned} The first 22 equations say: A2=xsinz+f(x,y)A1=ysinz+g(x,y) A_2=-x\sin z+f(x,y) \qquad A_1=y\sin z+g(x,y) We substitute into the 3rd3^\text{rd} equation: sinz+xfsinzyg=2x2sinzorxfyg=2x -\sin z+\partial_x f-\sin z-\partial_y g=2x-2\sin z \qquad \text{or} \qquad \partial_x f-\partial_y g=2x One solution is f=x2f=x^2 and g=0g=0. So A=ysinz,xsinz+x2,0 \vec A=\left\langle y\sin z,-x\sin z+x^2,0\right\rangle There are many other solutions.

    [×]
  55. F=xcosz,ycosz,2xsinz\vec F=\left\langle x\cos z,y\cos z,2x-\sin z\right\rangle

    Answer

    There is no vector potential. The contradiction is shown in the solution and in the remark.

    [×]

    Solution

    We assume A3=0A_3=0. So we need to solve: zA2=F1=xcoszzA1=F2=ycoszxA2yA1=F3=2xsinz\begin{aligned} \partial_z A_2&=-F_1=-x\cos z \\ \partial_z A_1&=F_2=y\cos z \\ \partial_x A_2-\partial_y A_1&=F_3=2x-\sin z \end{aligned} The first 22 equations say: A2=xsinz+f(x,y)A1=ysinz+g(x,y) A_2=-x\sin z+f(x,y) \qquad A_1=y\sin z+g(x,y) We substitute into the 3rd3^\text{rd} equation: sinz+xfsinzyg=2xsinzorxfyg=2x+sinz -\sin z+\partial_x f-\sin z-\partial_y g=2x-\sin z \qquad \text{or} \qquad \partial_x f-\partial_y g=2x+\sin z This is a contradiction because ff and gg cannot be functions of zz. So there is no vector potential.

    [×]

    Check

    To verify there is no vector potential, we compute the divergence: F=x(xcosz)+y(ycosz)+z(2xsinz)=cosz+coszcosz=cosz0\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x\cos z)+\partial_y(y\cos z)+\partial_z(2x-\sin z) \\ &=\cos z+\cos z-\cos z=\cos z \ne 0 \end{aligned} Since this is not 00, there cannot be a vector potential.

    [×]
  56. F=yz,xz,xy\vec F=\left\langle yz,xz,xy\right\rangle

    Answer

    A=xz22,yz22+x2y2,0\vec A =\left\langle \dfrac{xz^2}{2},-\,\dfrac{yz^2}{2}+\dfrac{x^2y}{2},0\right\rangle

    [×]

    Solution

    We first compute the divergence: F=x(yz)+y(xz)+z(xy)=0+0+0=0 \vec\nabla\cdot\vec F =\partial_x(yz)+\partial_y(xz)+\partial_z(xy) =0+0+0=0 Since this is 0, we expect there is a potential and solve: zA2=F1=yzzA1=F2=xzxA2yA1=F3=xy\begin{aligned} \partial_z A_2&=-F_1=-yz \\ \partial_z A_1&=F_2=xz \\ \partial_x A_2-\partial_y A_1&=F_3=xy \end{aligned} The first 22 equations say: A2=yz22+f(x,y)A1=xz22+g(x,y) A_2=-\,\dfrac{yz^2}{2}+f(x,y) \qquad A_1=\dfrac{xz^2}{2}+g(x,y) We substitute into the 3rd3^\text{rd} equation: xfyg=xy \partial_x f-\partial_y g=xy A solution is f=x2y2f=\dfrac{x^2y}{2} and g=0g=0. So a vector potential is: A=xz22,yz22+x2y2,0 \vec A =\left\langle \dfrac{xz^2}{2},-\,\dfrac{yz^2}{2}+\dfrac{x^2y}{2},0\right\rangle

    [×]
  57. F=x,y,z\vec F=\left\langle x,y,z\right\rangle

    Answer

    There is no vector potential because F=30\vec\nabla\cdot\vec F=3\ne0.

    [×]

    Solution

    We first compute the divergence: F=x(x)+y(y)+z(z)=1+1+1=3 \vec\nabla\cdot\vec F =\partial_x(x)+\partial_y(y)+\partial_z(z) =1+1+1=3 Since this is not 00, there is no vector potential.

    [×]
  58. PY: Checked to here.

    Review Exercises

  59. PY: Add the last problem from Edfinity Stokes.>

    Hint

    xxx

    [×]

    Answer

    xxx

    [×]

    Solution

    xxx

    [×]
  60. Q1

    Hint

    xxx

    [×]

    Answer

    xxx

    [×]

    Solution

    xxx

    [×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255