8. Properties of Curves
b. Limits and Derivatives of Vector Functions
Before defining the velocity, we need to define a derivative and before we define a derivative we need to define a limit.
1. Limits of Vector Functions
The limit of a function \(\displaystyle\lim_{x\rightarrow a}f(x)\) is the value the function \(f(x)\) approaches as \(x\) approaches \(a\). For a vector function, we look at the value each component approaches:
The limit of a vector function \(\vec{f}(t)=\langle f_1(t),f_2(t),f_3(t)\rangle\) as \(t\) approaches \(a\), is the vector function whose components are the limits of the components of \(\vec{f}(t)\): \[ \lim_{t\rightarrow a}\vec{f}(t)=\left( \lim_{t\rightarrow a}f_1(t), \lim_{t\rightarrow a}f_2(t), \lim_{t\rightarrow a}f_3(t)\right) \] provided those limits exist.
If \(\vec{f}(t) =\left\langle\dfrac{\sin(t-2)}{t-2},\dfrac{t^2-2t}{t-2},t^2\right\rangle\), compute \(\displaystyle \lim_{t\rightarrow2} \vec{f}(t)\).
\(\displaystyle \lim_{t\rightarrow2} \vec{f}(t) =\left\langle\lim_{t\rightarrow2} \dfrac{\sin(t-2)}{t-2}, \lim_{t\rightarrow2} \dfrac{t^2-2t}{t-2}, \lim_{t\rightarrow2} t^2\right\rangle=\langle1,2,4\rangle\)
Find the limit \(\displaystyle \lim_{s\rightarrow2}\vec{f}(s)\) if \(\vec{f}(s)=\left\langle \dfrac{s^2-4}{s-2},\dfrac{s+1}{3-s},s^2\right\rangle\)
\(\displaystyle \lim_{s\rightarrow2} \vec{f}(s)=\langle 4,3,4\rangle\)
\[ \lim_{s\rightarrow2} \vec{f}(s) =\left\langle\lim_{s\rightarrow2} \dfrac{s^2-4}{s-2}, \lim_{s\rightarrow2} \dfrac{s+1}{3-s}, \lim_{s\rightarrow2} s^2\right\rangle=\langle 4,3,4\rangle \]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum