23. Taylor Series

d.1. Taylor Polynomial Approximation

c. x1/3x^{1/3} about x=8x=8

The Taylor series for x1/3x^{1/3} about x=8x=8 is x1/3=2+112(x8)1288(x8)2+520736(x8)35248832(x8)4+115971968(x8)5+\begin{aligned} x^{1/3}=&2+\dfrac{1}{12}(x-8)-\dfrac{1}{288}(x-8)^2+\dfrac{5}{20\,736}(x-8)^3 \\ &-\dfrac{5}{248\,832}(x-8)^4+\dfrac{11}{5\,971\,968}(x-8)^5+\cdots \end{aligned} Here are the graphs of x1/3x^{1/3} (in BLUE) with the 0th0^\text{th} through 8th8^\text{th} degree Taylor polynomial approximations (in RED):

© 2025 MYMathApps

Supported in part by NSF Grant #1123255