The Taylor series for x1/3x^{1/3}x1/3 about x=8x=8x=8 is x1/3=2+112(x−8)−1288(x−8)2+520736(x−8)3−5248832(x−8)4+115971968(x−8)5+⋯\begin{aligned} x^{1/3}=&2+\dfrac{1}{12}(x-8)-\dfrac{1}{288}(x-8)^2+\dfrac{5}{20\,736}(x-8)^3 \\ &-\dfrac{5}{248\,832}(x-8)^4+\dfrac{11}{5\,971\,968}(x-8)^5+\cdots \end{aligned}x1/3=2+121(x−8)−2881(x−8)2+207365(x−8)3−2488325(x−8)4+597196811(x−8)5+⋯ Here are the graphs of x1/3x^{1/3}x1/3 (in BLUE) with the 0th0^\text{th}0th through 8th8^\text{th}8th degree Taylor polynomial approximations (in RED):