4. Integration by Parts

Recall: ā€ƒ ā€ƒ ā€ƒ āˆ«udv=uvāˆ’āˆ«vdu\displaystyle \int u\,dv=u\,v-\int v\,du ā€ƒ where ā€ƒ du=dudxdxdu=\dfrac{du}{dx}\,dx ā€ƒ and ā€ƒ dv=dvdxdxdv=\dfrac{dv}{dx}\,dx

b1. Choosing the 'Parts'

b. Log Examples

Compute āˆ«x4lnā”xdx\displaystyle \int x^4\ln x\,dx.

Normally we would take the polynomial x4x^4 as uu. However, since it is hard to integrate lnā”x\ln x, we take u=lnā”xdv=x4dxdu=1xdxv=x55\begin{array}{ll} u=\ln x & dv=x^4\,dx \\ du=\dfrac{1}{x}\,dx \quad & v=\dfrac{x^5}{5} \end{array} This is the ā€œLā€ in LAPTE. Then, the integration by parts gives: āˆ«x4lnā”xdx=x55lnā”xāˆ’āˆ«x551xdx=x55lnā”xāˆ’āˆ«x45dx=x55lnā”xāˆ’x525+C\begin{aligned} \int x^4\ln x\,dx &=\dfrac{x^5}{5}\ln x-\int \dfrac{x^5}{5}\dfrac{1}{x}\,dx \\ &=\dfrac{x^5}{5}\ln x-\int \dfrac{x^4}{5}\,dx \\ &=\dfrac{x^5}{5}\ln x-\dfrac{x^5}{25}+C \end{aligned}

We check by differentiating (using the Product Rule): If ā€‚ f(x)=x55lnā”xāˆ’x525f(x)=\dfrac{x^5}{5}\ln x-\dfrac{x^5}{25}, ā€‚ then fā€²(x)=x4lnā”x+x551xāˆ’x45=x4lnā”x f'(x)=x^4\ln x+\dfrac{x^5}{5}\dfrac{1}{x}-\dfrac{x^4}{5} =x^4\ln x which is the integrand we started with.

[Ɨ]

In this example, the general rule about selecting for dvdv a function easy to integrate supersedes the rule about taking uu as the polynomial.

Compute the integral āˆ«x9lnā”xdx\displaystyle \int x^9\ln x\,dx.

Answer

āˆ«x9lnā”xdx=110x10lnā”xāˆ’1100x10+C\displaystyle \int x^9\ln x\,dx =\dfrac{1}{10}x^{10}\ln x-\dfrac{1}{100}x^{10}+C

[Ɨ]

Solution

We let: u=lnā”xdv=x9dxdu=1xdxv=110x10\begin{array}{ll} u=\ln x & dv=x^9\,dx\\ du=\dfrac{1}{x}\,dx \quad & v=\dfrac{1}{10}x^{10} \end{array} So we get: āˆ«x9lnā”xdx=110x10lnā”xāˆ’āˆ«110x9dx=110x10lnā”xāˆ’1100x10+C\begin{aligned} \int x^9\ln x\,dx &=\dfrac{1}{10}x^{10}\ln x-\int \dfrac{1}{10}x^9\,dx \\ &=\dfrac{1}{10}x^{10}\ln x-\dfrac{1}{100}x^{10}+C \end{aligned}

[Ɨ]

Check

We check using the Product Rule: ddx(110x10lnā”xāˆ’1100x10)=x9lnā”x+110x101xāˆ’110x9=x9lnā”x\begin{aligned} \dfrac{d}{dx}&\left(\dfrac{1}{10}x^{10}\ln x-\dfrac{1}{100}x^{10}\right) \\ &=x^9\ln x+\dfrac{1}{10}x^{10}\dfrac{1}{x}-\dfrac{1}{10}x^9 =x^9\ln x \end{aligned}

[Ɨ]

Ā© 2025 MYMathApps

Supported in part by NSF Grant #1123255