8. Properties of Curves

h. Summary & Examples of Curve Computations

You may want to print this page as a study sheet.

1. Summary of Curve Computations

So far, from the position vector, we have calculated the formulas for velocity, acceleration, jerk, speed, arc length, unit tangent vector, unit normal vector, unit binormal vector, curvature, torsion, tangential acceleration, and normal acceleration, all of which are summarized below.

Position Vector

\(\vec{r}(t)=(x(t),y(t),z(t))\)


Velocity Vector

\(\vec{v}(t)=\dfrac{d\vec{r}}{dt} =\left\langle \dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\right\rangle\)


Acceleration Vector

\(\vec{a}(t)=\dfrac{d\vec{v}}{dt}=\dfrac{d^2\vec{r}}{dt^2} =\left\langle \dfrac{d^2x}{dt^2},\dfrac{d^2y}{dt^2},\dfrac{d^2z}{dt^2}\right\rangle\)


Jerk Vector

\(\vec{j}(t)=\dfrac{d\vec{a}}{dt}=\dfrac{d^2\vec{v}}{dt^2}= \dfrac{d^{3}\vec{r}}{dt^{3}} =\left\langle \dfrac{d^3x}{dt^3},\dfrac{d^3y}{dt^3},\dfrac{d^3z}{dt^3}\right\rangle\)


Speed

\(\dfrac{ds}{dt}=|\vec{v}|=\sqrt{\left(\dfrac{dx}{dt}\right)^2+ \left(\dfrac{dy}{dt}\right)^2+\left(\dfrac{dz}{dt}\right)^2}\)


Arclength (from \(A=\vec{r}(a)\)
to \(B=\vec{r}(b)\))

\(\displaystyle L=\int_{A}^{B} ds=\int_{a}^{b} |\vec{v}|\,dt\)


Unit Tangent Vector

\(\hat{T}=\dfrac{\vec{v}}{|\vec{v}|}\)




Velocity \(\times\) Acceleration



and its length

\(\vec{v}\times\vec{a}= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \dfrac{dx}{dt} & \dfrac{dy}{dt} & \dfrac{dz}{dt} \dfrac{\frac{}{}}{\frac{}{}} \\ \dfrac{d^2x}{dt^2} & \dfrac{d^2y}{dt^2} & \dfrac{d^2z}{dt^2} \end{vmatrix}\)

\(|\vec{v}\times\vec{a}|\)


Unit Binormal Vector

\(\hat{B}=\hat{T}\times\hat{N} =\dfrac{\vec{v}\times\vec{a}}{|\vec{v}\times\vec{a}|}\)


Unit Normal Vector



\(\begin{aligned} \hat{N} &=\dfrac{\text{proj}_{\bot \vec{v}}\vec{a}}{\left|proj_{\bot \vec{v}}\vec{a}\right|} =\dfrac{|\vec{v}|}{|\vec{v}\times\vec{a}|} \left(\vec{a}-\,\dfrac{\vec{a}\cdot\vec{v}}{|\vec{v}|^2}\vec{v}\right) \\ &=\hat{B}\times\hat{T}=\dfrac{\hat{T}'(t)}{|\hat{T}'(t)|} \end{aligned}\)


Curvature and
Radius of Curvature

\(\kappa=\dfrac{1}{R}=\dfrac{1}{|\vec{v}|}\left|\dfrac{d\hat{T}}{dt}\right| =\dfrac{|\vec{v}\times\vec{a}|}{|\vec{v}|^{3}}\)


Torsion

\(\tau=-\,\dfrac{d\hat{B}}{ds}\cdot\hat{N}= \dfrac{\vec{v}\times\vec{a}\cdot\vec{j}}{|\vec{v}\times\vec{a}|^2}\)


Tangential Acceleration

\(a_{T}=\vec{a}\cdot\hat{T}=\dfrac{d}{dt}|\vec{v}|\)


Normal Acceleration

\(a_{N}=\vec{a}\cdot\hat{N}=\kappa|\vec{v}|^2=\dfrac{|\vec{v}|^2}{R}\)

© MYMathApps

Supported in part by NSF Grant #1123255