3. Trigonometry
b. Triangle Definitions
In the right triangle at the right, the angle at the base has been denoted by \(\theta\), the opposite side is the altitude \(a\), the adjacent side is the base \(b\) and the hypotenuse is the diagonal side \(c\). In terms of these the six trig functions Sine Cosine Tangent Cotangent Secant Cosecant are defined to be: \[\begin{aligned} \sin\theta&=\dfrac{\text{Opp}}{\text{Hyp}}=\dfrac{a}{c}\quad &\cos\theta&=\dfrac{\text{Adj}}{\text{Hyp}}=\dfrac{b}{c} \\[8pt] \tan\theta&=\dfrac{\text{Opp}}{\text{Adj}}=\dfrac{a}{b}\quad &\cot\theta&=\dfrac{\text{Adj}}{\text{Opp}}=\dfrac{b}{a} \\[8pt] \sec\theta&=\dfrac{\text{Hyp}}{\text{Adj}}=\dfrac{c}{b}\quad &\csc\theta&=\dfrac{\text{Hyp}}{\text{Opp}}=\dfrac{c}{a} \end{aligned}\]
Memorize this!
There is a Mnemonic to remember the first three of these:
Mnemonic:
SOH CAH TOA
which stands for
Sin=Opp/Hyp Cos=Adj/Hyp Tan=Opp/Adj
Based on these we have the standard quotient and reciprocal identities:
\[\begin{aligned} \tan\theta&=\dfrac{\sin\theta}{\cos\theta}\quad &\cot\theta&=\dfrac{\cos\theta}{\sin\theta}=\dfrac{1}{\tan\theta} \\[8pt] \sec\theta&=\dfrac{1}{\cos\theta}\quad &\csc\theta&=\dfrac{1}{\sin\theta} \end{aligned}\]
Given the right triangle shown with adjacent side \(5\) and opposite side \(12\), find the hypotenuse and the six trig functions for the angle \(\theta\).
By the Pythagorean Theorem, the hypotenuse is \(\text{Hyp}\,=\sqrt{5^2+12^2}=\sqrt{169}=13\). So, the six trig functions are: \[\begin{aligned} \sin\theta&=\dfrac{\text{Opp}}{\text{Hyp}}=\dfrac{12}{13}\quad &\cos\theta&=\dfrac{\text{Adj}}{\text{Hyp}}=\dfrac{5}{13} \\[8pt] \tan\theta&=\dfrac{\text{Opp}}{\text{Adj}}=\dfrac{12}{5}\quad &\cot\theta&=\dfrac{\text{Adj}}{\text{Opp}}=\dfrac{5}{12} \\[8pt] \sec\theta&=\dfrac{\text{Hyp}}{\text{Adj}}=\dfrac{13}{5}\quad &\csc\theta&=\dfrac{\text{Hyp}}{\text{Opp}}=\dfrac{13}{12} \end{aligned}\]
Given the right triangle shown with adjacent side \(0.9\) and opposite side \(1.2\), find the hypotenuse and the six trig functions for the angle \(\theta\).
\(\begin{aligned} \sin\theta&=\dfrac{4}{5}\quad &\cos\theta&=\dfrac{3}{5} \\ \tan\theta&=\dfrac{4}{3}\quad &\cot\theta&=\dfrac{3}{4} \\ \sec\theta&=\dfrac{5}{3}\quad &\csc\theta&=\dfrac{5}{4} \end{aligned}\)
By the Pythagorean Theorem, the hypotenuse is \(\text{Hyp}\,=\sqrt{.9^2+1.2^2}=\sqrt{.81+1.44}=\sqrt{2.25}=1.5\). So, the six trig functions are: \[\begin{aligned} \sin\theta&=\dfrac{\text{Opp}}{\text{Hyp}}=\dfrac{1.2}{1.5}=\dfrac{4}{5}\quad &\cos\theta&=\dfrac{\text{Adj}}{\text{Hyp}}=\dfrac{0.9}{1.5}=\dfrac{3}{5} \\[8pt] \tan\theta&=\dfrac{\text{Opp}}{\text{Adj}}=\dfrac{1.2}{0.9}=\dfrac{4}{3}\quad &\cot\theta&=\dfrac{\text{Adj}}{\text{Opp}}=\dfrac{0.9}{1.2}=\dfrac{3}{4} \\[8pt] \sec\theta&=\dfrac{\text{Hyp}}{\text{Adj}}=\dfrac{1.5}{0.9}=\dfrac{5}{3}\quad &\csc\theta&=\dfrac{\text{Hyp}}{\text{Opp}}=\dfrac{1.5}{1.2}=\dfrac{5}{4} \end{aligned}\]
cj  
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum