3. Trigonometry

d. Trig Identities

2. Parity, Complementarity and Supplementarity Identities

Parity Identities

Parity Identities: Sine and Cosine
Sine is an odd function and cosine is an even function: sin(θ)=sin(θ)cos(θ)=cos(θ) \sin(-\theta)=-\sin(\theta) \qquad \cos(-\theta)=\cos(\theta) \Leftarrow\Leftarrow Read it! It simply explains the plot.

prop_parity_anim
Parity

Proof

Looking at the figure, the ray at the angle θ\theta hits the circle at the point (x,y)(x,y), while the ray at the angle θ-\theta hits the circle at the point (x,y)(x,-y). So: sin(θ)=yrwhilesin(θ)=yr=sin(θ) \sin(\theta)=\dfrac{y}{r} \quad \text{while} \quad \sin(-\theta)=\dfrac{-y}{r}=-\sin(\theta) and cos(θ)=xrwhilecos(θ)=xr=cos(θ) \cos(\theta)=\dfrac{x}{r} \quad \text{while} \quad \cos(-\theta)=\dfrac{x}{r}=\cos(\theta)

[×]

The parity of sin\sin and cos\cos can also be understood by looking at their plots.

prop_parity_sin_anim
sin(θ)=sin(θ)\sin(-\theta)=-\sin(\theta)
prop_parity_cos_anim
cos(θ)=cos(θ)\cos(-\theta)=\cos(\theta)

As a consequence:

Parity Identities: Tangent, Cotangent, Secant and Cosecant
Tangent, cotangent and cosecant are odd functions and secant is an even function: tan(θ)=tan(θ)cot(θ)=cot(θ) \tan(-\theta)=-\tan(\theta) \qquad \cot(-\theta)=-\cot(\theta) sec(θ)=sec(θ)csc(θ)=csc(θ) \sec(-\theta)=\sec(\theta) \qquad \quad \csc(-\theta)=-\csc(\theta) \Leftarrow\Leftarrow It's a simple computation.

Proof

tan(θ)=sin(θ)cos(θ)=sin(θ)cos(θ)=tan(θ) \tan(-\theta)=\dfrac{\sin(-\theta)}{\cos(-\theta)} =\dfrac{-\sin(\theta)}{\cos(\theta)}=-\tan(\theta) cot(θ)=cos(θ)sin(θ)=cos(θ)sin(θ)=cot(θ) \cot(-\theta)=\dfrac{\cos(-\theta)}{\sin(-\theta)} =\dfrac{\cos(\theta)}{-\sin(\theta)}=-\cot(\theta) sec(θ)=1cos(θ)=1cos(θ)=sec(θ) \sec(-\theta)=\dfrac{1}{\cos(-\theta)} =\dfrac{1}{\cos(\theta)}=\sec(\theta) \qquad csc(θ)=1sin(θ)=1sin(θ)=csc(θ) \csc(-\theta)=\dfrac{1}{\sin(-\theta)} =\dfrac{1}{-\sin(\theta)}=-\csc(\theta)

[×]

Complementarity Identities

Complementarity Identities: Sine and Cosine
The complementary angle for θ\theta is 90θ90^\circ-\theta or π2θ\dfrac{\pi}{2}-\theta. sin(π2θ)=cos(θ)cos(π2θ)=sin(θ) \sin\left(\dfrac{\pi}{2}-\theta\right)=\cos(\theta) \qquad \cos\left(\dfrac{\pi}{2}-\theta\right)=\sin(\theta) \Leftarrow\Leftarrow Read it! It simply explains the plot.

prop_comp_anim

Proof

Looking at the figure, if the angle θ\theta is measured counterclockwise from the positive xx-axis, then the complementary angle π2θ\dfrac{\pi}{2}-\theta can be measured clockwise from the positive yy-axis. So switching from an angle to its complement is equivalent to a reflection through the 4545^\circ diagonal line. This means that the roles of xx and yy are interchanged. (The opposite and adjacent sides are interchanged.) So: sin(π2θ)=OppHyp=xrcos(θ)=AdjHyp=xr\begin{aligned} \sin\left(\dfrac{\pi}{2}-\theta\right) &=\dfrac{\text{Opp}}{\text{Hyp}} =\dfrac{x}{r} \\ \cos(\theta) &=\dfrac{\text{Adj}}{\text{Hyp}} =\dfrac{x}{r} \end{aligned} and cos(π2θ)=AdjHyp=yrsin(θ)=OppHyp=yr\begin{aligned} \cos\left(\dfrac{\pi}{2}-\theta\right) &=\dfrac{\text{Adj}}{\text{Hyp}} =\dfrac{y}{r} \\ \sin(\theta) &=\dfrac{\text{Opp}}{\text{Hyp}} =\dfrac{y}{r} \end{aligned}

[×]

The complementarity identities can also be understood by comparing the plot of sin(θ)\sin(\theta) with that of cos(π2θ)\cos\left(\dfrac{\pi}{2}-\theta\right) and the plot of cos(θ)\cos(\theta) with that of sin(π2θ)\sin\left(\dfrac{\pi}{2}-\theta\right).

prop_parity_sin_anim
sin(θ)\sin(\theta)
prop_parity_cos_anim
cos(θ)\cos(\theta)
prop_parity_sin_anim
cos(π2θ)\cos\left(\dfrac{\pi}{2}-\theta\right)
prop_parity_cos_anim
sin(π2θ)\sin\left(\dfrac{\pi}{2}-\theta\right)

As a consequence:

Complementarity Identities: Tangent, Cotangent, Secant and Cosecant
tan(π2θ)=cot(θ)cot(π2θ)=tan(θ) \tan\left(\dfrac{\pi}{2}-\theta\right)=\cot(\theta) \qquad \cot\left(\dfrac{\pi}{2}-\theta\right)=\tan(\theta) sec(π2θ)=csc(θ)csc(π2θ)=sec(θ) \sec\left(\dfrac{\pi}{2}-\theta\right)=\csc(\theta) \qquad \csc\left(\dfrac{\pi}{2}-\theta\right)=\sec(\theta) \Leftarrow\Leftarrow It's a simple computation.

Proof

tan(π2θ)=sin(π2θ)cos(π2θ)=cos(θ)sin(θ)=cot(θ) \tan\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{\sin\left(\dfrac{\pi}{2}-\theta\right)}{\cos\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{\cos(\theta)}{\sin(\theta)}=\cot(\theta) cot(π2θ)=cos(π2θ)sin(π2θ)=sin(θ)cos(θ)=tan(θ) \cot\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{\cos\left(\dfrac{\pi}{2}-\theta\right)}{\sin\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{\sin(\theta)}{\cos(\theta)}=\tan(\theta) sec(π2θ)=1cos(π2θ)=1sin(θ)=csc(θ) \sec\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{1}{\cos\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{1}{\sin(\theta)}=\csc(\theta) csc(π2θ)=1sin(π2θ)=1cos(θ)=sec(θ) \csc\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{1}{\sin\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{1}{\cos(\theta)}=\sec(\theta)

[×]

Notice that switching from an angle to its complementary angle interchanges each trig function with its complementary function: sin\sin with cos\cos, tan\tan with cot\cot, sec\sec with csc\csc. This is, in fact, why they are called “co”-functions.

Supplementarity Identities

Supplementarity Identities: Sine and Cosine
The supplementary angle for θ\theta is 180θ180^\circ-\theta or πθ\pi-\theta. sin(πθ)=sin(θ)cos(πθ)=cos(θ) \sin(\pi-\theta)=\sin(\theta) \qquad \cos(\pi-\theta)=-\cos(\theta) \Leftarrow\Leftarrow Read it! It simply explains the plot.

prop_supp_anim

Proof

Looking at the figure, the ray at the angle θ\theta hits the circle at the point (x,y)(x,y), while the ray at the angle πθ\pi-\theta hits the circle at the point (x,y)(-x,y). So: sin(θ)=yrwhilesin(πθ)=yr=sin(θ) \sin(\theta)=\dfrac{y}{r} \quad \text{while} \quad \sin(\pi-\theta)=\dfrac{y}{r}=\sin(\theta) and cos(θ)=xrwhilecos(πθ)=xr=cos(θ) \cos(\theta)=\dfrac{x}{r} \quad \text{while} \quad \cos(\pi-\theta)=\dfrac{-x}{r}=-\cos(\theta)

[×]

The supplementarity identities can also be understood by comparing the plot of sin(θ)\sin(\theta) with that of sin(πθ)\sin(\pi-\theta) and the plot of cos(θ)\cos(\theta) with that of cos(πθ)\cos(\pi-\theta).

prop_supp_sin_anim
sin(θ)=sin(πθ)\sin(\theta)=\sin(\pi-\theta).
prop_supp_cos_anim
cos(θ)=cos(πθ)\cos(\theta)=-\cos(\pi-\theta).

As a consequence:

Supplementarity Identities: Tangent, Cotangent, Secant and Cosecant
tan(πθ)=tan(θ)cot(πθ)=cot(θ) \tan(\pi-\theta)=-\tan(\theta) \qquad \cot(\pi-\theta)=-\cot(\theta) sec(πθ)=sec(θ)csc(πθ)=csc(θ) \sec(\pi-\theta)=-\sec(\theta) \qquad \csc(\pi-\theta)=\csc(\theta) \quad \Leftarrow\Leftarrow It's a simple computation.

Proof

tan(πθ)=sin(πθ)cos(πθ)=sin(θ)cos(θ)=tan(θ) \tan(\pi-\theta)=\dfrac{\sin(\pi-\theta)}{\cos(\pi-\theta)} =\dfrac{\sin(\theta)}{-\cos(\theta)}=-\tan(\theta) cot(πθ)=cos(πθ)sin(πθ)=cos(θ)sin(θ)=cot(θ) \cot(\pi-\theta)=\dfrac{\cos(\pi-\theta)}{\sin(\pi-\theta)} =\dfrac{-\cos(\theta)}{\sin(\theta)}=-\cot(\theta) sec(πθ)=1cos(πθ)=1cos(θ)=sec(θ) \sec(\pi-\theta)=\dfrac{1}{\cos(\pi-\theta)} =\dfrac{1}{-\cos(\theta)}=-\sec(\theta) csc(πθ)=1sin(πθ)=1sin(θ)=csc(θ) \csc(\pi-\theta)=\dfrac{1}{\sin(\pi-\theta)} =\dfrac{1}{\sin(\theta)}=\csc(\theta) \qquad

[×]

Given that sin60=32andcos60=12 \sin60^\circ=\dfrac{\sqrt{3}}{2} \quad \text{and} \quad \cos60^\circ=\dfrac{1}{2} find sin(30)\sin(-30^\circ) and cos(30)\cos(-30^\circ).

We use both the parity and complementarity identities for sin(θ)\sin(\theta) and cos(θ)\cos(\theta).
Applying the parity identity and then the complementarity, we see: sin(30)=sin(30)=cos(60)=12 \sin(-30^\circ) = -\sin(30^\circ)=-\cos(60^\circ)=-\dfrac{1}{2} Similarly: cos(30)=cos(30)=sin(60)=32 \cos(-30^\circ)=\cos(30^\circ)=\sin(60^\circ)=\dfrac{\sqrt{3}}{2}

Given that sin60=32andcos60=12 \sin60^\circ=\dfrac{\sqrt{3}}{2} \quad \text{and} \quad \cos60^\circ=\dfrac{1}{2} find sin(150)\sin(-150^\circ).

Hint

Go from 150-150^\circ to 150150^\circ to 3030^\circ to 6060^\circ.

[×]

Answer

sin(150)=12\sin(-150^\circ) = -\dfrac{1}{2}

[×]

Solution

We applying the parity identity for sin\sin, then the supplementarity identity for sin\sin and finally the complementarity identity: sin(150)=sin(150)=sin(30)=cos(60)=12 \sin(-150^\circ)=-\sin(150^\circ)=-\sin(30^\circ) =-\cos(60^\circ)=-\dfrac{1}{2}

[×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255