20. Convergence of Positive Series
b.2. The \(p\)-Series
The series \(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n^p}\) is called a
\(p\)-series.
The harmonic series
\(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n}\)
is the special case of the \(p\)-series with \(p=1\).
The \(p\)-series \(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n^p}\)
is convergent if \(p \gt 1\) and is divergent if \(p \le 1\).
\(\Longleftarrow\) Read this! It's easy.
We check the different values of \(p\).
- The harmonic series with \(p=1\) was shown to be divergent in an exercise at the bottom of the previous page.
- For \(p \le 0\), the series \(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n^p} = \sum_{n=n_o}^\infty n^{-p}\) is divergent by the \(n^\text{th}\)-Term Divergence Test.
-
For \(p \gt 0\) but \(p \ne 1\), we apply the Integral Test:
The function \(f(x)=\dfrac{1}{x^p}\) is continuous, positive and decreasing. Further, \[\begin{aligned} \int_{n_o}^\infty \dfrac{1}{x^p}\,dx &=\int_{n_o}^\infty x^{-p}\,dx =\left[\dfrac{x^{-p+1}}{-p+1}\right]_{n_o}^\infty \\ &=\lim_{b\to\infty}\left[\dfrac{b^{-p+1}}{-p+1}\right] -\left[\dfrac{n_o^{-p+1}}{-p+1}\right] \end{aligned}\]-
If \(0< p< 1\), then \(-p+1>0\) and
\(\displaystyle \lim_{b\to\infty}\left[\dfrac{b^{-p+1}}{-p+1}\right]
=\infty\).
Consequently, \(\displaystyle \int_{n_o}^\infty \dfrac{1}{x^p}\,dx\) and hence \(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n^p}\) are divergent. -
If \(p>1\), then \(-p+1< 0\) and
\(\displaystyle \lim_{b\to\infty}\left[\dfrac{b^{-p+1}}{-p+1}\right]
=0\).
Consequently, \(\displaystyle \int_{n_o}^\infty \dfrac{1}{x^p}\,dx\) and hence \(\displaystyle \sum_{n=n_o}^\infty \dfrac{1}{n^p}\) are convergent.
-
If \(0< p< 1\), then \(-p+1>0\) and
\(\displaystyle \lim_{b\to\infty}\left[\dfrac{b^{-p+1}}{-p+1}\right]
=\infty\).
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{3}{n^2}\) is convergent or divergent.
You can apply the Integral Test directly, or simply say \(\displaystyle \sum_{n=1}^\infty \dfrac{3}{n^2}\) is \(3\) times a \(p\)-series with \(p=2 \gt 1\). Consequently, \(\displaystyle \sum_{n=1}^\infty \dfrac{3}{n^2}\) is convergent.
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n}}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n}}\) is divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n}}\) is a \(p\)-series with \(p=\dfrac{1}{3}<1\). So it is divergent.
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n^4}}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n^4}}\) is convergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{1}{\sqrt[\scriptsize3]{n^4}}\) is a \(p\)-series with \(p=\dfrac{4}{3} \gt 1\). So it is convergent.
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum