20. Convergence of Positive Series
f.1. The Root Test
This test gives a different way to compare a series to a geometric series.
Suppose \(\displaystyle \sum_{n=n_o}^\infty a_n\) is a positive series and the limit of the \(n^\text{th}\) root of the \(n^\text{th}\) term is \(\displaystyle \rho=\lim_{n\to\infty}\sqrt[\small n]{a_n}\).
- If \(\rho<1\), then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is convergent.
- If \(\rho>1\), then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is divergent.
\(\Longleftarrow\) Read this! It's easy.
\(\Longleftarrow\) The proof requires the
precise definition of the limit of a sequence.
If \(\rho=1\) the Root Test FAILS and says nothing about \(\displaystyle \sum_{n=n_o}^\infty a_n\).
For large \(n\), \(\sqrt[\small n]{a_n}\) is approximately \(\displaystyle \rho=\lim_{n\to\infty}\sqrt[\small n]{a_n}\). So pick some large \(N\). Then for \(n \ge N\), we have \(a_n\approx \rho^n\). So we can approximate the tail of the series by \[ \sum_{n=N}^\infty a_n \approx\sum_{n=N}^\infty \rho^n \] This is a geometric series which converges to \[ \sum_{n=N}^\infty \rho^n =\dfrac{\rho^N}{1-\rho} \] provided \(|\rho| \lt 1\) and diverges if \(|\rho| \ge 1\). So it is not surprizing that the original series also convegres or diverges when \(\rho\) is less than or greater than \(1\) with the exception that the borderline case of \(\rho=1\) is indeterminate instead of divergent.
Notice that the conclusions of the Root Test are the same as for the Ratio Test, except \(\rho\) is defined differently.
Determine if \(\displaystyle \sum_{n=0}^\infty \left(\dfrac{2n+1}{n+2}\right)^n\) is convergent or divergent.
We have \(a_n=\left(\dfrac{2n+1}{n+2}\right)^n\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\sqrt[\small n]{a_n} =\lim_{n\to\infty}\left[\left(\dfrac{2n+1}{n+2}\right)^n\right]^{1/n} \\ &=\lim_{n\to\infty}\dfrac{2n+1}{n+2}=2 \end{aligned}\] Since \(\rho=2 \gt 1\), the series \(\displaystyle \sum_{n=0}^\infty \left(\dfrac{2n+1}{n+2}\right)^n\) diverges.
Determine if \(\displaystyle \sum_{n=1}^\infty \left[\ln\left(\dfrac{2n+1}{n+2}\right)\right]^n\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \left[\ln\left(\dfrac{2n+1}{n+2}\right)\right]^n\) is convergent.
We have \(a_n=\left[\ln\left(\dfrac{2n+1}{n+2}\right)\right]^n\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\sqrt[\small n]{a_n} =\lim_{n\to\infty}\left(\left[\ln\left(\dfrac{2n+1}{n+2}\right)\right]^n\right)^{1/n} \\ &=\lim_{n\to\infty}\ln\left(\dfrac{2n+1}{n+2}\right)=\ln2 \end{aligned}\] Since \(\rho=\ln2 \lt 1\), the series \(\displaystyle \sum_{n=1}^\infty \left[\ln\left(\dfrac{2n+1}{n+2}\right)\right]^n\) converges.
Determine if \(\displaystyle \sum_{n=1}^\infty n^ne^{-n}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty n^ne^{-n}\) is divergent.
We have \(a_n=n^ne^{-n}\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\sqrt[\small n]{a_n} =\lim_{n\to\infty}\left(n^ne^{-n} \right)^{1/n} \\ &=\lim_{n\to\infty}\ln\left(\dfrac{n}{e}\right)=\infty \end{aligned}\] Since \(\rho=\infty \gt 1\), the series \(\displaystyle \sum_{n=0}^\infty n^ne^{-n}\) diverges.
In applying the Root Test, the following proposition is often useful:
Let \(p(n)\) be any polynomial. Then
\[
\lim_{n\to\infty}\sqrt[\small n]{p(n)}=1
\]
\(\Longleftarrow\) Read this! It's easy.
We compute the limit of the log and exponentiate the result. To compute the limit of the log, we use l'Hopital's rule: \[\begin{aligned} \ln(\rho)&=\lim_{n\to\infty}\ln\sqrt[\small n]{p(n)} =\lim_{n\to\infty}\dfrac{1}{n}\ln p(n) \\ &\overset{\text{l'H}}{=}\;\lim_{n\to\infty}\dfrac{p'(n)}{p(n)}=0 \end{aligned}\] since \(p'(n)\) is a polynomial of degree one less than \(p(n)\). So \[\begin{aligned} \ln(\rho)&=0\\ \rho&=e^0=1 \end{aligned}\]
Determine if \(\displaystyle \sum_{n=3}^\infty \dfrac{2^n}{n^{100}-2^{100}}\) is convergent or divergent.
We have \(a_n=\dfrac{2^n}{n^{100}-2^{100}}\). Notice \(n^{100}-2^{100}\) is a polynomial in \(n\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\sqrt[\small n]{a_n} =\lim_{n\to\infty}\sqrt[\small n]{\dfrac{2^n}{n^{100}-2^{100}}} \\ &=\dfrac{\displaystyle \lim_{n\to\infty}2} {\displaystyle \lim_{n\to\infty}\sqrt[\small n]{n^{100}-2^{100}}} =\dfrac{2}{1}=2 \end{aligned}\] Since \(\rho=2 \gt 1\), the series \(\displaystyle \sum_{n=3}^\infty \dfrac{2^n}{n^{100}-2^{100}}\) diverges.
Determine if \(\displaystyle \sum_{n=1}^\infty \dfrac{3n^2-4n+1}{n^n}\) is convergent or divergent.
\(\displaystyle \sum_{n=1}^\infty \dfrac{3n^2-4n+1}{n^n}\) is convergent.
We have \(a_n=\dfrac{3n^2-4n+1}{n^n}\). Notice \(3n^2-4n+1\) is a polynomial in \(n\). So \[\begin{aligned} \rho&=\lim_{n\to\infty}\sqrt[\small n]{a_n} =\lim_{n\to\infty}\sqrt[\small n]{\dfrac{3n^2-4n+1}{n^n}} \\ &=\lim_{n\to\infty}\dfrac{1}{n}\sqrt[\small n]{3n^2-4n+1} =\dfrac{1}{\infty}=0 \end{aligned}\] Since \(\rho=0 \lt 1\), the series \(\displaystyle \sum_{n=1}^\infty \dfrac{3n^2-4n+1}{n^n}\) converges.
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum