7. Trigonometric Substitutions

a1. Substitutions for x2+1x^2+1 - Tangent Substitutions

Recall the derivative and integral formulas for arctanx\arctan x: ddxarctanx=1x2+11x2+1dx=arctanx+C \dfrac{d}{dx}\arctan x=\dfrac{1}{x^2+1} \qquad \qquad \qquad \int \dfrac{1}{x^2+1}\,dx=\arctan x+C and the second Pythagorean Trig Identity: tan2θ+1=sec2θ \tan^2\theta+1=\sec^2\theta

These formulas motivate the following integration technique:

Tangent Substitution
If the integrand involves the quantity x2+1x^2+1 then it may be useful to make the substitution x=tanθx=\tan\theta. Then dx=sec2θdθdx=\sec^2\theta\,d\theta and x2+1=tan2θ+1=sec2θx^2+1=\tan^2\theta+1=\sec^2\theta. So it may be possible to re-express the integrand in terms of tanθ\tan\theta and secθ\sec\theta only.

Here are some examples:

Compute 1x2+1dx\displaystyle \int \dfrac{1}{\sqrt{x^2+1}}\,dx.

We substitute x=tanθx=\tan\theta. Then dx=sec2θdθdx=\sec^2\theta\,d\theta and so 1x2+1dx=1tan2θ+1sec2θdθ=1sec2θsec2θdθ=secθdθ=lnsecθ+tanθ+C\begin{aligned} \int \dfrac{1}{\sqrt{x^2+1}}\,dx &=\int \dfrac{1}{\sqrt{\tan^2\theta+1}}\,\sec^2\theta\,d\theta \\ &=\int \dfrac{1}{\sqrt{\sec^2\theta}}\,\sec^2\theta\,d\theta =\int \sec\theta\,d\theta \\ &=\ln|\sec\theta+\tan\theta|+C \end{aligned} Don't forget to substitute for the differential! Don't forget to substitute back! We already know that tanθ=x\tan\theta=x from the definition of the substitution. We also need a formula for secθ\sec\theta in terms of xx. There are two ways to find this formula:

We can use the Pythagorean identity tan2θ+1=sec2θ\tan^2\theta+1=\sec^2\theta. Then: secθ=tan2θ+1=x2+1 \sec\theta=\sqrt{\tan^2\theta+1}=\sqrt{x^2+1}

We can draw a right triangle with an angle θ\theta whose opposite side is xx and whose adjacent is 11. These sides are chosen so that tanθ=x1=x\tan\theta=\dfrac{x}{1}=x. Then the hypotenuse is x2+1\sqrt{x^2+1} and so: secθ=HYPADJ=x2+11=x2+1 \sec\theta=\dfrac{\text{HYP}}{\text{ADJ}} =\dfrac{\sqrt{x^2+1}}{1}=\sqrt{x^2+1}

tritan

Returning to the problem at hand, we conclude: 1x2+1dx=lnx2+1+x+C \int \dfrac{1}{\sqrt{x^2+1}}\,dx =\ln\left|\sqrt{x^2+1}+x\right|+C

We check by differentiating. If f(x)=lnx2+1+xf(x)=\ln\left|\sqrt{x^2+1}+x\right| then f(x)=1x2+1+x(122xx2+1+1)=1x2+1+x(x+x2+1x2+1)=1x2+1\begin{aligned} f'(x) &=\dfrac{1}{\sqrt{x^2+1}+x}\left(\dfrac{1}{2}\dfrac{2x}{\sqrt{x^2+1}}+1\right) \\ &=\dfrac{1}{\sqrt{x^2+1}+x}\left(\dfrac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}\right) =\dfrac{1}{\sqrt{x^2+1}} \end{aligned} which is the integrand we started with.

Compute xx2+1dx\displaystyle \int \dfrac{x}{\sqrt{x^2+1}}\,dx.

Method 1:
We substitute x=tanθx=\tan\theta. Then dx=sec2θdθdx=\sec^2\theta\,d\theta and so: xx2+1dx=tanθtan2θ+1sec2θdθ=tanθsec2θsec2θdθ=tanθsecθdθ=secθ+C=x2+1+C\begin{aligned} \int \dfrac{x}{\sqrt{x^2+1}}\,dx &=\int \dfrac{\tan\theta}{\sqrt{\tan^2\theta+1}}\sec^2\theta\,d\theta =\int \dfrac{\tan\theta}{\sqrt{\sec^2\theta}}\sec^2\theta\,d\theta \\ &=\int \tan\theta\sec\theta\,d\theta=\sec\theta+C =\sqrt{x^2+1}+C \end{aligned} This solution was unnecessarily complicated. Always look for an ordinary substitution first:

Method 2:
Let u=x2+1u=x^2+1. Then du=2xdxdu=2x\,dx or 12du=xdx\dfrac{1}{2}\,du=x\,dx. So: xx2+1dx=121udu=u+C=x2+1+C \int \dfrac{x}{\sqrt{x^2+1}}\,dx =\dfrac{1}{2}\int \dfrac{1}{\sqrt{u}}\,du =\sqrt{u}+C=\sqrt{x^2+1}+C

Now it's your turn:

Compute 1(x2+1)3/2dx\displaystyle \int \dfrac{1}{(x^2+1)^{3/2}}\,dx.

Hint

Let x=tanθx=\tan\theta.

[×]

Answer

1(x2+1)3/2dx=x1+x2+C\displaystyle \int \dfrac{1}{(x^2+1)^{3/2}}\,dx =\dfrac{x}{\sqrt{1+x^2}}+C

[×]

Solution

We substitute x=tanθx=\tan\theta. Then dx=sec2θdθdx=\sec^2\theta\,d\theta and so: 1(x2+1)3/2dx=1(tan2θ+1)3/2sec2θdθ=1sec3θsec2θdθ=1secθdθ=cosθdθ=sinθ+C\begin{aligned} \int \dfrac{1}{(x^2+1)^{3/2}}\,dx &=\int \dfrac{1}{(\tan^2\theta+1)^{3/2}}\sec^2\theta\,d\theta \\ &=\int \dfrac{1}{\sec^3\theta}\sec^2\theta\,d\theta =\int \dfrac{1}{\sec\theta}\,d\theta \\ &=\int \cos\theta\,d\theta=\sin\theta+C \end{aligned} Examining the triangle, we see sinθ=OPPHYP=x1+x2\sin\theta=\dfrac{\text{OPP}}{\text{HYP}}=\dfrac{x}{\sqrt{1+x^2}}. So: 1(x2+1)3/2dx=x1+x2+C \int \dfrac{1}{(x^2+1)^{3/2}}\,dx =\dfrac{x}{\sqrt{1+x^2}}+C

[×]

Check

We check by differentiating. If f(x)=x1+x2f(x)=\dfrac{x}{\sqrt{1+x^2}}, then f(x)=1+x2(1)x2x21+x2x2+1=(1+x2)x2(x2+1)3/2=1(x2+1)3/2\begin{aligned} f'(x) &=\dfrac{\sqrt{1+x^2}(1)-x\dfrac{2x}{2\sqrt{1+x^2}}}{x^2+1} \\ &=\dfrac{(1+x^2)-x^2}{(x^2+1)^{3/2}} \\ &=\dfrac{1}{(x^2+1)^{3/2}} \end{aligned} which is the integrand we started with.

[×]

Compute 01x3(x2+1)3/2dx\displaystyle \int_0^1 \dfrac{x^3}{(x^2+1)^{3/2}}\,dx.

Hint

Use the ordinary substitution u=x2+1u=x^2+1.

[×]

Answer

01x3(x2+1)3/2dx=3222\displaystyle \int_0^1 \dfrac{x^3}{(x^2+1)^{3/2}}\,dx =\dfrac{3}{2}\sqrt{2}-2

[×]

Solution

We use the ordinary substitution u=x2+1u=x^2+1. Then du=2xdxdu=2x\,dx or 12du=xdx\dfrac{1}{2}\,du=x\,dx and x2=u1x^2=u-1. Further, Ifx=1thenu=2.Ifx=0thenu=1.\begin{aligned} \text{If} \quad x=1 \quad & \text{then} \quad u=2. \\ \text{If} \quad x=0 \quad & \text{then} \quad u=1. \end{aligned} So: 01x3(x2+1)3/2dx=1212u1u3/2du=1212(u1/2u3/2)du=12[2u1/2+2u1/2]12=[u1/2+u1/2]12=(2+12)(1+1)=3222\begin{aligned} \int_0^1 \dfrac{x^3}{(x^2+1)^{3/2}}\,dx &=\dfrac{1}{2}\int_1^2 \dfrac{u-1}{u^{3/2}}\,du =\dfrac{1}{2}\int_1^2 (u^{-1/2}-u^{-3/2})\,du \\ &=\dfrac{1}{2}\left[\dfrac{}{}2u^{1/2}+2u^{-1/2}\right]_1^2 =\left[\dfrac{}{}u^{1/2}+u^{-1/2}\right]_1^2 \\ &=\left(\sqrt{2}+\dfrac{1}{\sqrt{2}}\right)-(1+1) =\dfrac{3}{2}\sqrt{2}-2 \end{aligned}

[×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255