4. Integration by Parts

Recall:       udv=uvvdu\displaystyle \int u\,dv=u\,v-\int v\,du   where   du=dudxdxdu=\dfrac{du}{dx}\,dx   and   dv=dvdxdxdv=\dfrac{dv}{dx}\,dx

d. Recurrence of the Integral

2. Reduction Formulas

Integration by parts can also be used to derive formulas which can be applied repeatedly to simplify an integral. The derivation again involves the recurrence of the original integral.

Derive the reduction formula
cosnxdx=1ncosn1xsinx+n1ncosn2xdx \int \cos^n x\,dx =\dfrac{1}{n}\cos^{n-1}x\sin x+\dfrac{n-1}{n}\int \cos^{n-2}x\,dx (Do not memorize the reduction formulas.)

We first do integration by parts with u=cosn1xdv=cosxdxdu=(n1)cosn2xsinxdxv=sinx\begin{array}{ll} u=\cos^{n-1}x & dv=\cos x\,dx \\ du=-(n-1)\cos^{n-2}x\sin x\,dx \quad & v=\sin x \end{array} So: cosnxdx=cosn1xsinx+(n1)cosn2xsin2xdx \int \cos^n x\,dx =\cos^{n-1}x\sin x+\int (n-1)\cos^{n-2}x\sin^2 x\,dx Within the remaining integral, we use the identity sin2x=1cos2x\sin^2 x=1-\cos^2 x, multiply out the integrand and write the remaining integral as a sum of two integrals:: cosnxdx=cosn1xsinx+(n1)cosn2x(1cos2x)dx=cosn1xsinx+(n1)cosn2xcosnxdx=cosn1xsinx+(n1)cosn2xdx(n1)cosnxdx\begin{aligned} \int \cos^n x\,dx &=\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x(1-\cos^2 x)\,dx \\ &=\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x-\cos^n x\,dx \\ &=\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x\,dx-(n-1)\int \cos^n x\,dx \end{aligned} Once again, the original integral recurs on the right. So we solve for it: ncosnxdx=cosn1xsinx+(n1)cosn2xdxcosnxdx=1ncosn1xsinx+n1ncosn2xdx\begin{aligned} n\int \cos^n x\,dx &=\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x\,dx \\ \int \cos^n x\,dx &=\dfrac{1}{n}\cos^{n-1}x\sin x+\dfrac{n-1}{n}\int \cos^{n-2}x\,dx \end{aligned} which is the desired reduction formula. Note, we do not need a +C+C because there is still an unevaluated integral on the right.

Use the reduction formula cosnxdx=1ncosn1xsinx+n1ncosn2xdx \int \cos^n x\,dx =\dfrac{1}{n}\cos^{n-1}x\sin x+\dfrac{n-1}{n}\int \cos^{n-2}x\,dx to compute cos2xdx\displaystyle \int \cos^2 x\,dx and cos4xdx\displaystyle \int \cos^4 x\,dx.

We first use the reduction formula with n=2n=2: cos2xdx=12cos1xsinx+121dx \int \cos^2 x\,dx =\dfrac{1}{2}\cos^1 x\sin x+\dfrac{1}{2}\int 1\,dx To complete this, we do the integral: cos2xdx=sinxcosx2+x2+C \int \cos^2 x\,dx =\dfrac{\sin x\cos x}{2}+\dfrac{x}{2}+C Next, we use the reduction formula with n=4n=4: cos4xdx=14cos3xsinx+34cos2xdx \int \cos^4 x\,dx =\dfrac{1}{4}\cos^3 x\sin x+\dfrac{3}{4}\int \cos^2 x\,dx and substitute in the formula for cos2xdx\displaystyle \int \cos^2 x\,dx: cos4xdx=14cos3xsinx+34(sinxcosx2+x2)+C=cos3xsinx4+3sinxcosx8+3x8+C\begin{aligned} \int \cos^4 x\,dx &=\dfrac{1}{4}\cos^3 x\sin x +\dfrac{3}{4}\left(\dfrac{\sin x\cos x}{2}+\dfrac{x}{2}\right)+C \\ &=\dfrac{\cos^3 x\sin x}{4}+\dfrac{3\sin x\cos x}{8}+\dfrac{3x}{8}+C \end{aligned} Of course you could also do either integral by using the trig identity cos2x=1+cos2x2\cos^2 x=\dfrac{1+\cos 2x}{2}. We will cover that method in more detail in the chapter on Trig Integrals.

Derive a reduction formula for sinnxdx\displaystyle \int \sin^n x\,dx

Answer

sinnxdx=1nsinn1xcosx+n1nsinn2xdx\displaystyle \int \sin^n x\,dx =-\,\dfrac{1}{n}\sin^{n-1}x\cos x+\dfrac{n-1}{n}\int \sin^{n-2}x\,dx

[×]

Solution

We first do integration by parts with u=sinn1xdv=sinxdxdu=(n1)sinn2xcosxdxv=cosx\begin{array}{ll} u=\sin^{n-1}x & dv=\sin x\,dx \\ du=(n-1)\sin^{n-2}x\cos x\,dx \quad & v=-\cos x \end{array} So: sinnxdx=sinn1xcosx+(n1)sinn2xcos2xdx \int \sin^n x\,dx =-\sin^{n-1}x\cos x+\int (n-1)\sin^{n-2}x\cos^2 x\,dx Within the resulting integral, we use the identity cos2x=1sin2x\cos^2 x=1-\sin^2 x, multiply out the integrand and write the resulting integral as a sum of two integrals:: sinnxdx=sinn1xcosx+(n1)sinn2x(1sin2x)dx=sinn1xcosx+(n1)sinn2xsinnxdx=sinn1xcosx+(n1)sinn2xdx(n1)sinnxdx\begin{aligned} \int \sin^n x\,dx &=-\sin^{n-1}x\cos x+(n-1)\int \sin^{n-2}x(1-\sin^2 x)\,dx \\ &=-\sin^{n-1}x\cos x+(n-1)\int \sin^{n-2}x-\sin^n x\,dx \\ &=-\sin^{n-1}x\cos x+(n-1)\int \sin^{n-2}x\,dx-(n-1)\int \sin^n x\,dx \end{aligned} Once again, the original integral recurs on the right. So we solve for it: nsinnxdx=sinn1xcosx+(n1)sinn2xdxsinnxdx=1nsinn1xcosx+n1nsinn2xdx\begin{aligned} n\int \sin^n x\,dx &=-\sin^{n-1}x\cos x+(n-1)\int \sin^{n-2}x\,dx \\ \int \sin^n x\,dx &=-\,\dfrac{1}{n}\sin^{n-1}x\cos x+\dfrac{n-1}{n}\int \sin^{n-2}x\,dx \end{aligned} which is the desired reduction formula.

[×]

Using this reduction formula, compute the integral sin3xdx\displaystyle \int \sin^3 x\,dx.

Answer

sin3xdx=13sin2xcosx23cosx+C\displaystyle \int \sin^3 x\,dx =-\,\dfrac{1}{3}\sin^2 x\cos x-\dfrac{2}{3}\cos x+C

[×]

Solution

Let's start with the reduction formula: sinnxdx=1nsinn1xcosx+n1nsinn2xdx \int \sin^n x\,dx =-\,\dfrac{1}{n}\sin^{n-1}x\cos x+\dfrac{n-1}{n}\int \sin^{n-2}x\,dx Plugging in n=3n=3, we get sin3xdx=13sin2xcosx+23sinxdx=13sin2xcosx23cosx+C\begin{aligned} \int \sin^{3} x\,dx &=-\,\dfrac{1}{3}\sin^2 x\cos x+\dfrac{2}{3}\int \sin x\,dx \\ &=-\,\dfrac{1}{3}\sin^2 x\cos x-\dfrac{2}{3}\cos x+C \end{aligned}

[×]

Check

We check by differentiating. If f=13sin2xcosx23cosxf=-\,\dfrac{1}{3}\sin^2 x\cos x-\dfrac{2}{3}\cos x, then f=23sinxcos2x+13sin3x+23sinx=23sinx(1sin2x)+13sin3x+23sinx=sin3x\begin{aligned} f'&=-\,\dfrac{2}{3}\sin x\cos^2 x+\dfrac{1}{3}\sin^3 x+\dfrac{2}{3}\sin x \\ &=-\,\dfrac{2}{3}\sin x(1-\sin^2 x)+\dfrac{1}{3}\sin^3 x+\dfrac{2}{3}\sin x \\ &=\sin^3 x \end{aligned}

[×]

Remark

The integral can also be done with the substitution u=cosxu=\cos x and du=sinxdxdu=-\sin x\,dx: sin3xdx=(1cos2x)sinxdx=(1u2)du=u+u33+C=cosx+cos3x3+C\begin{aligned} \int \sin^3 x\,dx &=\int (1-\cos^2 x)\sin x\,dx =-\int (1-u^2)\,du \\ &=-u+\dfrac{u^3}{3}+C =-\cos x+\dfrac{\cos^3 x}{3}+C \end{aligned} We check this is equivalent to the previous solution: 13sin2xcosx23cosx+C=13(1cos2x)cosx23cosx+C=cosx+cos3x3+C\begin{aligned} -\,\dfrac{1}{3}\sin^2 x\cos x-\dfrac{2}{3}\cos x+C &=-\,\dfrac{1}{3}(1-\cos^2 x)\cos x-\dfrac{2}{3}\cos x+C \\ &=-\cos x+\dfrac{\cos^3 x}{3}+C \end{aligned}

[×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255