Recall:
∫udv=uv−∫vdu where
du=dxdudx and dv=dxdvdx
d. Recurrence of the Integral
2. Reduction Formulas
Integration by parts can also be used to derive formulas which can be applied
repeatedly to simplify an integral. The derivation again involves the
recurrence of the original integral.
Derive the reduction formula ∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
(Do not memorize the reduction formulas.)
We first do integration by parts with
u=cosn−1xdu=−(n−1)cosn−2xsinxdxdv=cosxdxv=sinx
So:
∫cosnxdx=cosn−1xsinx+∫(n−1)cosn−2xsin2xdx
Within the remaining integral, we use the identity sin2x=1−cos2x,
multiply out the integrand and write the remaining integral as a sum of two
integrals::
∫cosnxdx=cosn−1xsinx+(n−1)∫cosn−2x(1−cos2x)dx=cosn−1xsinx+(n−1)∫cosn−2x−cosnxdx=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)∫cosnxdx
Once again, the original integral recurs on the right. So we solve for it:
n∫cosnxdx∫cosnxdx=cosn−1xsinx+(n−1)∫cosn−2xdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
which is the desired reduction formula. Note, we do not need a +C
because there is still an unevaluated integral on the right.
Use the reduction formula
∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
to compute ∫cos2xdx and ∫cos4xdx.
We first use the reduction formula with n=2:
∫cos2xdx=21cos1xsinx+21∫1dx
To complete this, we do the integral:
∫cos2xdx=2sinxcosx+2x+C
Next, we use the reduction formula with n=4:
∫cos4xdx=41cos3xsinx+43∫cos2xdx
and substitute in the formula for ∫cos2xdx:
∫cos4xdx=41cos3xsinx+43(2sinxcosx+2x)+C=4cos3xsinx+83sinxcosx+83x+C
Of course you could also do either integral by using the trig identity
cos2x=21+cos2x. We will cover that method in more
detail in the chapter on
Trig Integrals.
We first do integration by parts with
u=sinn−1xdu=(n−1)sinn−2xcosxdxdv=sinxdxv=−cosx
So:
∫sinnxdx=−sinn−1xcosx+∫(n−1)sinn−2xcos2xdx
Within the resulting integral, we use the identity cos2x=1−sin2x,
multiply out the integrand and write the resulting integral as a sum of two integrals::
∫sinnxdx=−sinn−1xcosx+(n−1)∫sinn−2x(1−sin2x)dx=−sinn−1xcosx+(n−1)∫sinn−2x−sinnxdx=−sinn−1xcosx+(n−1)∫sinn−2xdx−(n−1)∫sinnxdx
Once again, the original integral recurs on the right. So we solve for it:
n∫sinnxdx∫sinnxdx=−sinn−1xcosx+(n−1)∫sinn−2xdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
which is the desired reduction formula.
Let's start with the reduction formula:
∫sinnxdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
Plugging in n=3, we get
∫sin3xdx=−31sin2xcosx+32∫sinxdx=−31sin2xcosx−32cosx+C
The integral can also be done with the substitution u=cosx and
du=−sinxdx:
∫sin3xdx=∫(1−cos2x)sinxdx=−∫(1−u2)du=−u+3u3+C=−cosx+3cos3x+C
We check this is equivalent to the previous solution:
−31sin2xcosx−32cosx+C=−31(1−cos2x)cosx−32cosx+C=−cosx+3cos3x+C
Placeholder text:
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum