5. Vectors
c. Scalar Multiplication
4. Linear Combinations
If we combine vector addition and scalar multiplication, we get a linear combination.
The linear combination of the vectors \(\vec u,\vec v,\cdots,\vec w\) with coefficients \(a,b,\cdots,c\) is the expression \[ a\vec u+b\vec v+\cdots+c\vec w \] Notice we can do this with any number of vectors and coefficients (as long as the numbers match).
For example, the linear combination of the vectors \(\vec p=\left\langle3,4\right\rangle\), \(\vec q=\left\langle-1,3\right\rangle\) and \(\vec r=\left\langle2,-2\right\rangle\) with coefficients \(2\), \(-3\), and \(4\) is \[\begin{aligned} 2\vec p-3\vec q+4\vec r &=2\left\langle3,4\right\rangle-3\left\langle-1,3\right\rangle+4\left\langle2,-2\right\rangle \\ &=\left\langle6,8\right\rangle+\left\langle3,-9\right\rangle+\left\langle8,-8\right\rangle =\left\langle17,-9\right\rangle \end{aligned}\]
Compute \(5\left\langle-2,1\right\rangle+3\left\langle1,2\right\rangle-2\left\langle2,4\right\rangle +\left\langle4,-3\right\rangle\).
\( 5\left\langle-2,1\right\rangle+3\left\langle1,2\right\rangle -2\left\langle2,4\right\rangle+\left\langle4,-3\right\rangle =\left\langle-7,0\right\rangle \)
\[\begin{aligned} 5&\left\langle-2,1\right\rangle+3\left\langle1,2\right\rangle -2\left\langle2,4\right\rangle+\left\langle4,-3\right\rangle \\ &=\left\langle-10,5\right\rangle+\left\langle3,6\right\rangle +\left\langle-4,-8\right\rangle+\left\langle4,-3\right\rangle \\ &=\left\langle-7,0\right\rangle \end{aligned}\]
Write the vector \(\vec v=\left\langle10,6\right\rangle\) as a linear combination of the vectors \(\vec p=\left\langle2,3\right\rangle\) and \(\vec q=\left\langle-1,3\right\rangle\). In other words, find numbers \(a\) and \(b\) satisfying: \[ \vec v=a\vec p+b\vec q \]
\( \vec v=4\vec p-2\vec q \)
We first write out the equation \(\vec v=a\vec p+b\vec q\): \[ \left\langle10,6\right\rangle =a\left\langle2,3\right\rangle+b\left\langle-1,3\right\rangle \] This is the two equations: \[\begin{aligned} 10&=2a-b \\ 6&=3a+3b \end{aligned}\] The second equation implies \(b=2-a\). We substitute this into the first equation which becomes: \[\begin{aligned} 10&=3a-2 \\ \end{aligned}\] Consequently, \(a=4\) and hence \(b=-2\). We conclude: \[ \vec v=4\vec p-2\vec q \]
We check: \[\begin{aligned} 4\vec p-2\vec q =4\left\langle2,3\right\rangle-2\left\langle-1,3\right\rangle =\left\langle10,6\right\rangle=\vec v \end{aligned}\]
You can use this Maplet to practice 2D vector algebra (requires Maple on the computer where this is executed):
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum